15-410

“Computers make very fast, very accurate mistakes.”
--Brandon Long

Hardware Overview
Sep. 3, 2008

Dave Eckhardt
Roger Dannenberg

LO4_Har dwar e 15-410, F'08

Synchronization

Today's class
= Not exactly Chapter 2 or 13

Project O
= Due Wednesday at midnight
= Consider not using a late day
= Could be a valuable commodity later
= Remember, this is a warm-up
= Reliance on these skills will increase rapidly
Upcoming
= Project 1
= | ecture on “The Process”

? 15-410, F'08

Synchronization

Personal Simics licenses
= Simics machine-simulator software is licensed

= \We have enough “seats” for the class
= Should work on most CMU-network machines
= Will not work on most non-CMU-network
machines
= Options
= CMU “Address extension” service (non-
encrypted VPN)

= “Personal academic license” for a personal

Linux box
» locked to your personal machine (MAC address)

3 » apply at www.simics.net (top right of page) 15-410. F'08

Synchronization

Simics on Windows?
= Simics simulator itself is available for Windows

= 15-410 build/debug infrastructure is not
= Can be hacked up, issues may arise
» Version skew, partner, ...
Options
= Dual-boot Linux/Windows, run Linux in VMware

= Usability via X depends on network latency
= May be too slow —though we are experimenting

= Port to cygwin (may be non-trivial)
= There are some Andrew cluster machines...

15-410, F'08

Outline

Computer hardware

CPU State

Fairy tales about system calls

CPU context switch (intro)

Interrupt handlers

Race conditions

Interrupt masking

Sample hardware device —countdown timer

5 15-410, F'08

Inside The Box - Historical/Logical

6 15-410, F'08

Inside The Box - Really

7 15-410, F'08

CPU State

User registers (on Planet IA32)
= General purpose - %eax, %ebx, %ecx, %edx
= Stack Pointer - %esp
= Frame Pointer - %ebp

= Mysterious String Registers - %esi, Y%edi

8 15-410, F'08

CPU State

Non-user registers, a.k.a....

Processor status register(s)

= Currently running: user code / kernel code?
= |nterrupts on / off

= Virtual memory on / off
= Memory model

= small, medium, large, purple, dinosaur

15-410, F'08

CPU State

Floating point number registers
= | ogically part of “User registers”

= Sometimes another “special” set of registers
= Some machines don't have floating point
= Some processes don't use floating point

10

15-410, F'08

Story time!

Time for some fairy tales
= The getpid() story (shortest legal fairy tale)
= The read() story (toddler version)
= The read() story (grade-school version)

11

15-410, F'08

The Story of getpid()

User process is computing
= User process calls getpid() library routine
= Library routine executes TRAP $314159
= |n Intel-land, TRAP s called “ | NT” (because it
ISn't one)
» REMEMBER: “| NT” is not an interrupt

The world changes
= Some registers dumped into memory somewhere
= Some registers loaded from memory somewhere

The processor has entered kernel mode

12 15-410, F'08

13

User Mode

15-410, F'08

14

Entering Kernel Mode

15-410, F'08

15

Entering Kernel Mode

15-410, F'08

The Kernel Runtime Environment

Language runtimes differ
= ML: may be no stack (“nothing but heap”)
= C: stack-based

Processor is more-or-less agnostic
= Some assume/mandate a stack

“Trap handler” builds kernel runtime environment
= Depending on processor
= Switches to correct stack
= Saves registers
= Turns on virtual memory
= Flushes caches

16

15-410, F'08

The Story of getpid()

Process runs in kernel mode
= runni ng->u_reg[R EAX] = runni ng->u_pi d;

“Return from interrupt”

m Processor state restored to user mode
= (modulo %eax)

User process returns to computing
= |ibrary routine returns %eax as value of getpid()

17 15-410, F'08

18

Returning to User Mode

15-410, F'08

The Story of getpid()

What's the getpid() system call?
= C function you call to get your process ID
= “Single instruction” (| NT) which modifies %eax

= Privileged code which can access OS internal
state

19 15-410, F'08

A Story About read()

User process is computing
count = read(7, buf, sizeof (buf));

User process “goes to sleep”
Operating system issues disk read
Time passes

Operating system copies data to user buffer
User process “wakes up”

20 15-410, F'08

Another Story About read()

P1: read()
= Trap to kernel mode

Kernel: tell disk: “read sector 2781828”

Kernel: switch to running P2
= Return to user mode - but to P2, not P1!
= P1is “blocked in a system call”
= P1's %eip is part-way through driver code
= Marked “unable to execute more instructions”

P2: compute 1/3 of Mandelbrot set

21

15-410, F'08

Another Story About read()

Disk: done!

= Asserts “interrupt request” signal

= CPU stops running P2's instructions
= |nterrupts to kernel mode

= Runs “disk interrupt handler” code

Kernel: switch to P1

22

= Return from interrupt - but to P1, not P2!

= P2 s able to execute instructions, but not doing s 0
= P2 is not “blocked”

= |tis “runnable”
= But it is not “running”

15-410, F'08

Interrupt Vector Table

How should CPU handle this particular interrupt?
= Disk interrupt = invoke disk driver

= Mouse interrupt = invoke mouse driver

Need to know
= Where to dump registers

= Often: property of current process, not of
Interrupt

= New register values to load into CPU

= Key: new program counter, new status register
» These define the new execution environment

23

15-410, F'08

Interrupt Dispatch

Table lookup
= |nterrupt controller says: this Is interrupt source #3
= CPU fetches table entry #3
= Table base-pointer programmed in OS startup
= Table-entry size defined by hardware

Save old processor state
Modify CPU state according to table entry
Start running interrupt handler

24 15-410, F'08

Interrupt Return

“Return from interrupt” operation
= | oad saved processor state back into registers
= Restoring program counter reactivates “old” code
= Hardware instruction typically restores some state
= Kernel code must do the remainder

25 15-410, F'08

Example: x86/IA32

CPU saves old processor state
= Stored on “kernel stack” - picture follows

CPU modifies state according to table entry
= | oads new privilege information, program counter

Interrupt handler begins
= Uses kernel stack for its own purposes

Interrupt handler completes
= Empties stack back to original state
= |nvokes “interrupt return” (| RET) Iinstruction
= Registers loaded from kernel stack

= Mode switched from “kernel” to “user”
260 15-410, F'08

IA32 Single-Task Mode Example

Stack Usage with No
Privilege-Level Change

Interrupted Procedure’s
and Handler's Stack

From intel-sys.pdf

~<——ESP Before (please consult!)
EFLAGS Transfer to Handler
cS
EIF

Error Code |==—ESF After
Transfer to Handler

Picture: Interrupt/Exception while in kernel mode (Project 1)
Hardware pushes registers on current stack, NO STAC K CHANGE

27

EFLAGS (processor state)
CS/EIP (return address)
Error code (certain interrupts/faults, not others: see intel-sys.pdf)

IRET restores state from EIP, CS, EFLAGS 15-410. F'08

Race Conditions

Two concurrent activities
= Computer program, disk drive

Various execution sequences produce various
“answers”

= Disk interrupt before or after function call?

Execution sequence Is not controlled
= SO either outcome is possible “randomly”

System produces random “answers”
= One answer or another “wins the race”

28 15-410, F'08

Race Conditions —Disk Device Driver

“Top half” wants to launch disk-1/O requests
= |f disk is idle, send it the request
= |f disk is busy, queue request for later

Interrupt handler action depends on queue status
= Work in gueue = transmit next request to disk

= Queue empty = let disk go idle

Various execution orders possible
= Disk interrupt before or after “disk idle” test?

System produces random “answers”
= “Work in queue = transmit next request” (good)

= “Work in queue = let disk go idle” (what??)
29 15-410, F'08

Race Conditions —Driver Skeleton

dev_start(request) {
| f (device_idle)
send devi ce(request);
el se
enqueue(r equest);
}
dev intr() {
...finish up previous request...
i f (new request = head()) {
send_devi ce(new_request);
} el se
device idle = 1;

30 15-410, F'08

Race Conditions —Good Case

31

User process | nterrupt handler
| f (device |dle)
/[* no, so... */
enqueue(r equest)
| NTERRUPT
...finish up...

new = 0x80102044,

send devi ce(nhew);

RETURN FROM
| NTERRUPT

15-410, F'08

Race Conditions —Bad Case

32

User process

|nterrupt handler

| f (device_ idle)

[* no, so... */

| NTERRUPT

.. finish up..

new = O;

device 1dle =

1

RETURN FROM
| NTERRUPT

enqueue(request)

15-410, F'08

What Went Wrong?

“Top half” ran its algorithm
= Examine state
= Commit to action

Interrupt handler ran its algorithm
= Examine state

= Commit to action

Various outcomes possible
= Depends on exactly when interrupt handler runs

System produces random “answers”
= Study & avoid this in your P1!

33 15-410, F'08

Interrupt Masking

Two approaches

= Temporarily suspend/mask/defer device
interrupt while checking and enqueueing

= Will cover further before Project 1

= Or use a lock-free data structure
= [left as an exercise for the reader]

Considerations

= Avoid blocking all interrupts
= [not a big issue for 15-410]

= Avoid blocking too long
= Part of Project 1, Project 3 grading criteria

34 15-410, F'08

Timer —Behavior

Simple behavior
= Count something
= CPU cycles, bus cycles, microseconds
= \When you hit a limit, signal an interrupt
= Reload counter to initial value
= Done “in background” / “in hardware”
= (Doesn't wait for software to do reload)

Summary
= No “requests”, no “results”
= Steady stream of evenly-distributed interrupts

35

15-410, F'08

Timer —Why?

Why interrupt a perfectly good execution?

Avoid CPU hogs
while (1)
conti nue;

Maintain accurate time of day

= Battery-backed calendar counts only seconds
(poorly)

Dual-purpose interrupt
= Timekeeping
++t 1 cks_si nce boot;

= Avoid CPU hogs: force process switch

36 15-410, F'08

Summary

Computer hardware

CPU State

Fairy tales about system calls

CPU context switch (intro)

Interrupt handlers

Race conditions

Interrupt masking

Sample hardware device —countdown timer

37

15-410, F'08

