
15-410,F'081

The Process
Sep. 8, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L06a_Process

15-410
“Luckily the stack is a simple data structure.”

15-410,F'083

Synchronization

Reminders on collaborationReminders on collaboration
� Project 1 is individual
� Talking about code is ok
� Possessing the code of another is not ok
� Different classes have different policies
� We expect you to read and follow the policies of this class

� If something is unclear, please mail us

15-410,F'084

Synchronization

P2/P3/P4 partnersP2/P3/P4 partners
� Partner deadline coming soon!
� If you already know who your partner is, please reg ister

now
� It makes it easier for others to partner
� It will stem the tide of annoying reminder e-mail

15-410,F'085

Synchronization

Anybody reading comp.risks?Anybody reading comp.risks?

This lectureThis lecture
� Chapter 3, but not exactly!

� We are skipping 3.5 and 3.6, including the terrifyi ng “POSIX
Shared Memory”

15-410,F'086

Outline

Process as pseudo-machineProcess as pseudo-machine
� (that's all there is)

Process life cycleProcess life cycle

Process kernel statesProcess kernel states

Process kernel stateProcess kernel state

P1/P3 memory layoutP1/P3 memory layout
� (just a teaser for now)

15-410,F'087

The Computer

Stack

Program

Registers

Keyboard

Screen

Timer

15-410,F'088

The Process

Stack

Code
Data
Heap

Registers

stdin

stdout

timer

15-410,F'089

Process life cycle
(nomenclature courtesy of The Godfathers)

BirthBirth
� (or, well, fission)

SchoolSchool

WorkWork

DeathDeath

15-410,F'0810

Birth

Where do new processes come from?Where do new processes come from?
� (Not: under a cabbage leaf, by stork, ...)

What do we need?What do we need?
� Memory contents

� Text, data, stack
� CPU register contents (N of them)
� “ I/O ports ”

� File descriptors, e.g., stdin/stdout/stderr
� Hidden “stuff”

� timer state, current directory, umask

15-410,F'0811

Birth

Intimidating?Intimidating?

How to specify all of that stuff?How to specify all of that stuff?
� What is your {name,quest,favorite_color}?

Gee, we already have Gee, we already have oneone process we like... process we like...
� Maybe we could use its settings to make a new one.. .
� Birth via “cloning”

15-410,F'0812

Birth – fork() - 1

““ fork” - Original Unix process creation system callfork” - Original Unix process creation system call

MemoryMemory
� Copy all of it
� Later lecture: VM tricks may make copy cheaper

RegistersRegisters
� Copy all of them

� All but one: parent learns child's process ID, chil d gets 0

15-410,F'0813

Birth – fork() - 2

File descriptorsFile descriptors
� Copy all of them
� Can't copy the files!
� Copy references to open-file state

Hidden stuffHidden stuff
� Do whatever is "obvious"

ResultResult
� Original, “parent”, process
� Fully-specified “child” process, despite 0 paramete rs to

fork()

15-410,F'0814

Now what?

Two copies of the same process is Two copies of the same process is boringboring

Transplant surgery!Transplant surgery!
� Implant new memory!

� New program text
� Implant new registers!

� Old ones don't point well into the new memory
� Keep (most) file descriptors

� Good for cooperation/delegation
� Hidden state?

� Do what's “obvious”

15-410,F'0815

Original Process

Stack

/bin/sh
Data
Heap

Registers

stdin

stdout

timer t=4

15-410,F'0816

Toss Heap, Data

Stack

/bin/sh

Registers

stdin

stdout

timer t=4

15-410,F'0817

Load New Code, Data From File

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer t=4

15-410,F'0818

Reset Stack, Heap

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer t=4[Heap]

15-410,F'0819

Fix “Stuff”

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer off[Heap]

15-410,F'0820

Initialize Registers

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer off[Heap]

15-410,F'0821

Begin Execution

Stack

/u/b/gcc
Data

Registers

stdin

stdout

timer offHeap

15-410,F'0822

What's The Implant Procedure
Called?

int execve(

 char *path,

 char *argv[],

 char *envp[])

15-410,F'0823

Birth - other ways

There is another wayThere is another way
� Well, two

spawn()spawn()
� Carefully specify all features of new process

� Complicated
� Win: don't need to copy stuff you will immediately toss

Plan 9 rfork() / Linux clone()Plan 9 rfork() / Linux clone()
� Build new process from old one
� Specify which things get shared vs. copied

� “Copy memory, share files, copy environment, share ...”

15-410,F'0824

School
Old process calledOld process called

execve(

char *path,

char *argv[],

char *envp[]);

Result isResult is
main(int argc,

 char *argv[],

 char *envp[])

{

 ...

}

15-410,F'0825

School

How does the magic work?How does the magic work?
� 15-410 motto: No magic

Kernel process setup: we saw...Kernel process setup: we saw...
� Toss old data memory
� Toss old stack memory
� Load executable file

Also...Also...

15-410,F'0826

The Stack!

Kernel builds stack for new processKernel builds stack for new process
� Transfers argv[] and envp[] to top of new process s tack
� Hand-crafts stack frame for __main()
� Sets registers

� Stack pointer (to top frame)
� Program counter (to start of __main())

15-410,F'0827

Work

Process statesProcess states
� Running

� User mode or kernel mode
� Runnable

� Q: User mode, kernel mode, both, neither?
» Be sure to understand this

� Blocked
� Awaiting some event

» I/O completion, exit of another process, message, . ..
» Maybe sleeping for a fixed period of time

� Scheduler: “do not run”
� Q: User mode, kernel mode, both, neither?

15-410,F'0828

Work

Other process statesOther process states
� Forking

� Probably obsolete, once used for special treatment
� Zombie

� Process has called exit(), parent hasn't noticed ye t

““ Exercise for the reader”Exercise for the reader”
� Draw the state transition diagram

15-410,F'0829

Death

VoluntaryVoluntary
 void exit(int reason);

Hardware exceptionHardware exception
� SIGSEGV - no memory there for you!

Software exceptionSoftware exception
� SIGXCPU – used "too much" CPU time

15-410,F'0830

Death

System call - kill(pid, sig);System call - kill(pid, sig);
� “Deliver sig to process pid”

� (negative values of pid have “interesting” behaviors)

� Keyboard ^C � equivalent of
� kill(getpid(), SIGINT);

� Start/stop logging
� kill(daemon_pid, SIGUSR1);
� % kill -USR1 33
� % kill -USR2 33
� This is a “non-kill” use of kill()

� Any other key uses of kill()?

15-410,F'0831

Death

System call - kill(pid, sig);System call - kill(pid, sig);
� “Deliver sig to process pid”

� (negative values of pid have “interesting” behaviors)

� Keyboard ^C � kill(getpid(), SIGINT);
� Start/stop logging - kill -USR1 33

� “Lost in Space”!!
� kill(Will_Robinson, SIGDANGER);

15-410,F'0832

Death

System call - kill(pid, sig);System call - kill(pid, sig);
� “Deliver sig to process pid”

� (negative values of pid have “interesting” behaviors)

� Keyboard ^C � kill(getpid(), SIGINT);
� Start/stop logging - kill -USR1 33

� “Lost in Space”!!
� kill(Will_Robinson, SIGDANGER);
� I apologize to IBM for lampooning their serious sig nal

15-410,F'0833

Death

System call - kill(pid, sig);System call - kill(pid, sig);
� “Deliver sig to process pid”

� (negative values of pid have “interesting” behaviors)

� Keyboard ^C � kill(getpid(), SIGINT);
� Start/stop logging - kill -USR1 33

� “Lost in Space”!!
� kill(Will_Robinson, SIGDANGER);
� I apologize to IBM for lampooning their serious sig nal

» No, I apologize for that apology...

15-410,F'0834

Process cleanup

Resource releaseResource release
� Open files: close() each

� TCP: 2 minutes (or more)
� Solaris disk offline - forever (“ None shall pass!”)

� Memory: release

AccountingAccounting
� Record resource usage in a magic file

Gone?Gone?

15-410,F'0835

“All You Zombies...”

Zombie processZombie process
� Process state reduced to exit code
� Waits around until parent calls wait()

� Exit code copied to parent's memory
� PCB deleted from kernel

15-410,F'0836

Kernel process state

The dreaded "PCB"The dreaded "PCB"
� (polychlorinated biphenol?)

Process Control BlockProcess Control Block
� “Everything without a user-visible memory address”

� Kernel management information
� Scheduler state
� The “stuff”

15-410,F'0837

Sample PCB contents

Pointer to CPU register save areaPointer to CPU register save area

Process number, parent process numberProcess number, parent process number

Countdown timer valueCountdown timer value

Memory segment infoMemory segment info
� User memory segment list
� Kernel stack reference

Scheduler infoScheduler info
� linked list slot, priority, “sleep channel”

15-410,F'0838

15-410 Virtual Memory Layout

Stack

Program

k-stack
k-stack

k-stack
k-stack

Kernel Data

Kernel Program

Stack

Program

Stack

Program

Stack

Program

4080 MB

16 MB

15-410,F'0839

15-410 Physical Memory Layout

Kernel Memory

User Memory

16 MB

240 MB

15-410,F'0840

Ready to Implement All This?

Not so complicated...Not so complicated...
� getpid()
� fork()
� exec()
� wait()
� exit()

What could possibly go wrong?What could possibly go wrong?

15-410,F'0841

Summary

Parts of a ProcessParts of a Process
� Physical – Memory pages, registers, I/O devices
� Virtual – Memory regions, registers, I/O “ports”

Birth, School, Work, DeathBirth, School, Work, Death

““ Big Picture” of system memory – both of themBig Picture” of system memory – both of them
� (Numbers & arrangement are 15-410–specific)

