
15-410, F'081

Synchronization #1
Sep. 12, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L08a_Synch

15-410
“My computer is 'modern'!”

15-410, F'082

Synchronization

Partner sign-up!Partner sign-up!
� Approximately 20 students un-partnered
� ~5 groups have one-way sign-up (both, please)
� Soon I expect to start spamming the un-signed

Simics issuesSimics issues
� Simics doesn't simulate time with 100% accuracy

� Mentioned in handout, but:
» Sometimes it runs slower (“of course”)
» Sometimes it runs faster (!)

� Simics doesn't blink
� Not your fault

15-410, F'083

Outline

Me vs. Chapter 6Me vs. Chapter 6
� I will cover 6.3 much more than the text does...

� ...even more than the previous edition did...
� This is a good vehicle for understanding race condi tions

� Atomic sequences vs. voluntary de-scheduling
� “Sim City” example

� You will need to read the chapter
� Hopefully my preparation/review will clarify it

15-410, F'084

Outline

An intrusion from the “real world”An intrusion from the “real world”

Two fundamental operationsTwo fundamental operations

Three necessary critical-section propertiesThree necessary critical-section properties

Two-process solutionTwo-process solution

N-process “Bakery Algorithm”N-process “Bakery Algorithm”

15-410, F'085

Mind your P's and Q's

Imagine you wrote this code:Imagine you wrote this code:
 choosing[i] = true;

 number[i] =

 max(number[0], number[1], ...) + 1;

 choosing[i] = false;

15-410, F'086

Mind your P's and Q's

Imagine you wrote this code:Imagine you wrote this code:
 choosing[i] = true;

 number[i] =

 max(number[0], number[1], ...) + 1;

 choosing[i] = false;

Imagine what is sent out over the memory bus is:Imagine what is sent out over the memory bus is:
 number[i] = 11;

 choosing[i] = false;

Is that ok?Is that ok?

15-410, F'087

Mind your P's and Q's

How about this?How about this?
 choosing[i] = false;

 number[i] = 11;

““ Computer Architecture for $200, Dave”...Computer Architecture for $200, Dave”...

15-410, F'088

My Computer is Broken?!

No, your computer is No, your computer is
“modern”“modern”
� Processor “write pipe”

queues memory stores
� ...and coalesces

“redundant” writes!

Crazy?Crazy?
� Not if you're pounding

out pixels!

CPU

Memory

choosing[i] false

number[i] 45

choosing[i] true

15-410, F'089

My Computer is Broken?!

Magic “memory barrier” instructions available...Magic “memory barrier” instructions available...
� ...stall processor until write pipe is empty

Ok, now I understandOk, now I understand
� Probably not!

� http://www.cs.umd.edu/~pugh/java/memoryModel/
� see “Double-Checked Locking is Broken” Declaration

� See also “release consistency”

Textbook mutual exclusion algorithm memory modelTextbook mutual exclusion algorithm memory model
� ...is “what you expect” (pre-“modern”)
� Ok to use simple model for homework, exams, P2

� But it's not right for multi-processor Pentium-4 sy stems...

15-410, F'0810

Synchronization Fundamentals

Two fundamental operationsTwo fundamental operations
� Atomic instruction sequence
� Voluntary de-scheduling

Multiple implementations of eachMultiple implementations of each
� Uniprocessor vs. multiprocessor
� Special hardware vs. special algorithm
� Different OS techniques
� Performance tuning for special cases

Be Be very clearvery clear on features, differences on features, differences
� The two operations are more “opposite” than “the sa me”

15-410, F'0811

Synchronization Fundamentals

Multiple client abstractions use the two operationsMultiple client abstractions use the two operations

Textbook prefersTextbook prefers
� Semaphore, critical region, monitor

VeryVery relevant relevant
� Mutex/condition variable (POSIX pthreads)
� Java “synchronized” keyword (3 flavors)

15-410, F'0812

Synchronization Fundamentals

Two Fundamental operationsTwo Fundamental operations
� Atomic instruction sequence

 Voluntary de-scheduling

15-410, F'0813

Atomic Instruction Sequence

Problem domainProblem domain
� Short sequence of instructions
� Nobody else may interleave same sequence

� or a “related” sequence

� “Typically” nobody is competing

15-410, F'0814

Non-interference

Multiprocessor simulation (think: “Sim City”)Multiprocessor simulation (think: “Sim City”)
� Coarse-grained “turn” (think: hour)
� Lots of activity within each turn
� Think: M:N threads, M=objects, N=#processors

MostMost cars don't interact in a game turn... cars don't interact in a game turn...
� Must model those that do
� So street intersections can't generally be “process ed” by

multiple cars at the same time

15-410, F'0815

Commerce

Customer 0 Customer 1
cash = store->cash; cash = store->cash;
cash += 50; cash += 20;
wallet -= 50; wallet -= 20;
store->cash = cash; store->cash = cash;

Should the store call the police?
Is deflation good for the economy?

15-410, F'0816

Commerce – Observations

Instruction sequences are “short”Instruction sequences are “short”
� Ok to “mutually exclude” competitors (make them wai t)

Probability of collision is “low”Probability of collision is “low”
� Many non-colliding invocations per second

� (lots of stores in the city)

� Must not use an expensive anti-collision approach!
� “Just make a system call” is not an acceptable answer

� Common (non-colliding) case must be fast

15-410, F'0817

Synchronization Fundamentals

Two Fundamental operations Two Fundamental operations
 Atomic instruction sequence

� Voluntary de-scheduling

15-410, F'0818

Voluntary De-scheduling

Problem domainProblem domain
� “Are we there yet?”
� “Waiting for Godot”

Example - “Sim City” disaster daemonExample - “Sim City” disaster daemon
while (date < 1906-04-18) cwait(date);

while (hour < 5) cwait(hour);

for (i = 0; i < max_x; i++)

 for (j = 0; j < max_y; j++)

 wreak_havoc(i,j);

15-410, F'0819

Voluntary De-scheduling

Anti-atomicAnti-atomic
� We want to be “maximally interleaved against”

Running and making others wait is Running and making others wait is wrongwrong
� Wrong for them – we won't be ready for a while
� Wrong for us – we can't be ready until they progress

We don't We don't wantwant exclusion exclusion

We We wantwant others to run - they others to run - they enableenable us us

CPU CPU dede-scheduling is an OS service!-scheduling is an OS service!

15-410, F'0820

Voluntary De-scheduling

Wait patternWait pattern
 LOCK WORLD

 while (!(ready = scan_world())){

 UNLOCK WORLD

 WAIT_FOR(progress_event)

 LOCK WORLD

 }

Your partner-competitor willYour partner-competitor will
 SIGNAL(progress_event)

15-410, F'0821

Standard Nomenclature

Textbook's code skeleton / namingTextbook's code skeleton / naming
do {

 entry section

 critical section:

 ...computation on shared state...

 exit section

 remainder section:

 ...private computation...

} while (1);

15-410, F'0822

Standard Nomenclature

What's muted by this picture?What's muted by this picture?
� What's in that critical section?

� Quick atomic sequence?
� Need for a long sleep?

For now...For now...
� Pretend critical section is a brief atomic sequence
� Study the entry/exit sections

15-410, F'0823

Three Critical Section
Requirements
Mutual ExclusionMutual Exclusion

� At most one process executing critical section

ProgressProgress
� Choosing next entrant cannot wait for non-participa nts
� Choosing protocol must have bounded time

Bounded waitingBounded waiting
� Cannot wait forever once you begin entry protocol
� ...bounded number of entries by others

� not necessarily a bounded number of instructions

15-410, F'0824

Notation For 2-Process Protocols

Process iProcess i = “us” = “us”

Process jProcess j = “the other process” = “the other process”

i,ji,j are are process-localprocess-local variables variables
� {i,j} = {0,1}
� j == 1 – i

This notation is “odd”This notation is “odd”
� But it may well appear in an exam question

15-410, F'0825

Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)

 continue;

...critical section...

turn = j;

15-410, F'0826

Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)

 continue;

...critical section...

turn = j;

Mutual exclusion – yes (make sure you see it)Mutual exclusion – yes (make sure you see it)

15-410, F'0827

Idea #1 - “Taking Turns”

int turn = 0;

while (turn != i)

 continue;

...critical section...

turn = j;

Mutual exclusion – yes (make sure you see it)Mutual exclusion – yes (make sure you see it)

Progress - Progress - nono
� Strict turn-taking is fatal
� If P[0] never tries to enter, P[1] will wait foreve r

� Violates the “depends on non-participants” rule

15-410, F'0828

Idea #2 - “Registering Interest”

boolean want[2] = {false, false};

want[i] = true;

while (want[j])

 continue;

...critical section...

want[i] = false;

15-410, F'0829

Mutual Exclusion (Intuition)

Process 0 Process 1
want[0] = true;
while (want[1]) ;

...enter... want[1] = true;
while (want[0]) ;
while (want[0]) ;

want[0] = false; while (want[0]) ;
...enter...

15-410, F'0830

Mutual Exclusion (Intuition)

Process 0 Process 1
want[0] = true;
while (want[1]) ;

...enter... want[1] = true;
while (want[0]) ;
while (want[0]) ;

want[0] = false; while (want[0]) ;
...enter...

How about progress?

15-410, F'0831

Failing “Progress”

Process 0 Process 1
want[0] = true;

want[1] = true;
while (want[1]) ;

while (want[0]) ;

It works for every other interleaving!

15-410, F'0832

“Taking Turns When Necessary”

Rubbing two ideas togetherRubbing two ideas together
boolean want[2] = {false, false};

int turn = 0;

want[i] = true;

turn = j;

while (want[j] && turn == j)

 continue;

...critical section...

want[i] = false;

15-410, F'0833

Proof Sketch of Exclusion

Assume contrary: two processes in critical sectionAssume contrary: two processes in critical section

Both in c.s. implies want[i] == want[j] == trueBoth in c.s. implies want[i] == want[j] == true

Thus both while loops exited because “turn != j”Thus both while loops exited because “turn != j”

Cannot have (turn == 0 && turn == 1)Cannot have (turn == 0 && turn == 1)
� So one exited first

w.l.o.g., P0 exited first because “turn ==1” failedw.l.o.g., P0 exited first because “turn ==1” failed
� So turn==0 before turn==1
� So P1 had to set turn==0 before P0 set turn==1
� So P0 could not see turn==0, could not exit loop first!

15-410, F'0834

Proof Sketch Hints

want[i] == want[j] == truewant[i] == want[j] == true
“want[]” fall away, focus on “turn”

turn[] vs. loop exit...turn[] vs. loop exit...

 What really happens here?

Process 0 Process 1
turn = 1; turn = 0;
while (turn == 1); while (turn == 0);

15-410, F'0835

Bakery Algorithm

More than two processes?More than two processes?
� Generalization based on bakery/deli counter

� Get monotonically-increasing ticket number from
dispenser

� Wait until monotonically-increasing “now serving” = = you
� You have lowest number � all people with smaller

numbers have already been served

Multi-process versionMulti-process version
� Unlike “reality”, two people can get the same ticke t

number
� Sort by “ticket number with tie breaker”:

� (ticket number, process number) tuple

15-410, F'0836

Bakery Algorithm

Phase 1 – Pick a numberPhase 1 – Pick a number
� Look at all presently-available numbers
� Add 1 to highest you can find

Phase 2 – Wait until you hold Phase 2 – Wait until you hold lowestlowest number number
� Not strictly true: processes may have same number
� Use process-id as a tie-breaker

� (ticket 7, process 99) > (ticket 7, process 45)

� Your turn when you hold lowest (t,pid)

15-410, F'0837

Bakery Algorithm

boolean choosing[n] = { false, ... };

int number[n] = { 0, ... } ;

15-410, F'0838

Bakery Algorithm

Phase 1: Pick a numberPhase 1: Pick a number
choosing[i] = true;

number[i] =

 max(number[0], number[1], ...) + 1;

choosing[i] = false;

Worst case: everybody picks same number!Worst case: everybody picks same number!

But at least But at least next wavenext wave of arrivals will pick a larger of arrivals will pick a larger
number...number...

15-410, F'0839

Bakery Algorithm

Phase 2: Sweep “proving” we have lowest numberPhase 2: Sweep “proving” we have lowest number
for (j = 0; j < n; ++j) {

 while (choosing[j])

 continue;

 while ((number[j] != 0) &&

 ((number[i], i) > (number[j], j)))

 continue;

}

...critical section...

number[i] = 0;

15-410, F'0840

Summary

Memory is Memory is weirdweird

Two fundamental operations - understand!Two fundamental operations - understand!
� Brief exclusion for atomic sequences
� Long-term yielding to get what you want

Three necessary critical-section propertiesThree necessary critical-section properties

Understand these “exclusion algorithms” (which are Understand these “exclusion algorithms” (which are
also race-condition parties)also race-condition parties)
� Two-process solution
� N-process “Bakery Algorithm”

