
15-410, F'081

Synchronization #2
Sep. 15, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L09a_Synch

15-410
“Strangers in the night...”

15-410, F'082

Synchronization

Project 1 due todayProject 1 due today
� (but you knew that)
� Again, please try your hand-in directory early

15-410, F'083

Synchronization

Register your project partner – sooner is betterRegister your project partner – sooner is better
� “Partner registration” page on Projects page
� If you know your partner today, please register tod ay

� You'll get your shared AFS space sooner
� Your classmates will appreciate it

15-410, F'084

Outline

Last timeLast time
� Two building blocks
� Three requirements for mutual exclusion
� Algorithms people don't use for mutual exclusion

TodayToday
� Ways to really do mutual exclusion

UpcomingUpcoming
� Inside voluntary descheduling
� Project 2 – thread library

15-410, F'085

Mutual Exclusion: Reminder

Protects an atomic instruction sequenceProtects an atomic instruction sequence
� Do "something" to guard against

� CPU switching to another thread
� Thread running on another CPU

AssumptionsAssumptions
� Atomic instruction sequence will be “short”
� No other thread “likely” to compete

15-410, F'086

Mutual Exclusion: Goals

Typical case (no competitor) should be fastTypical case (no competitor) should be fast

Atypical case can be slowAtypical case can be slow
� Should not be “too wasteful”

15-410, F'087

Interfering Code Sequences

Customer Delivery
cash = store->cash; cash = store->cash;
cash += 50; cash -= 2000;
wallet -= 50; wallet += 2000;
store->cash = cash; store->cash = cash;

Which sequences interfere?
“Easy”: Customer interferes with Customer
Also: Delivery interferes with Customer

15-410, F'088

Mutex aka Lock aka Latch

Specify interfering code sequences via Specify interfering code sequences via an objectan object
� Data item(s) “protected by the mutex”

Object methods encapsulate entry & exit protocolsObject methods encapsulate entry & exit protocols
 mutex_lock(&store->lock);

 cash = store->cash

 cash += 50;

 personal_cash -= 50;

 store->cash = cash;

 mutex_unlock(&store->lock);

What's inside the object?What's inside the object?

15-410, F'089

Mutual Exclusion: Atomic
Exchange
Intel x86 XCHG instructionIntel x86 XCHG instruction

� intel-isr.pdf page 754

xchg (%esi), %edixchg (%esi), %edi
int32 xchg(int32 *lock, int32 val) {

 register int old;

 old = *lock; /* bus is locked */

 lock = val; / bus is locked */

 return (old);

}

15-410, F'0810

Inside a Mutex

InitializationInitialization
int lock_available = 1;

Try-lockTry-lock
i_won = xchg(&lock_available, 0);

Spin-waitSpin-wait
while (!xchg(&lock_available, 0)

 continue;

UnlockUnlock
xchg(&lock_available, 1); /*expect 0!!*/

15-410, F'0811

Strangers in the Night,
Exchanging 0's

1

Thread

0
?

Thread
?

0

15-410, F'0812

And the winner is...

0

Thread
0

Thread
1

15-410, F'0813

Does it work?

[What are the questions, again?][What are the questions, again?]

15-410, F'0814

Does it work?

Mutual ExclusionMutual Exclusion

ProgressProgress

Bounded WaitingBounded Waiting

15-410, F'0815

Does it work?

Mutual ExclusionMutual Exclusion
� There's only one 1; 1's are conserved
� Only one thread can see lock_available == 1

15-410, F'0816

Does it work?

Mutual ExclusionMutual Exclusion
� There's only one 1; 1's are conserved
� Only one thread can see lock_available == 1

ProgressProgress
� Whenever lock_available == 1 some thread will get i t

15-410, F'0817

Does it work?

Mutual ExclusionMutual Exclusion
� There's only one 1; 1's are conserved
� Only one thread can see lock_available == 1

ProgressProgress
� Whenever lock_available == 1 some thread will get i t

Bounded WaitingBounded Waiting
� No
� A thread can lose arbitrarily many times

15-410, F'0818

Ensuring Bounded Waiting

IntuitionIntuition
� Lots of people might XCHG “at the same time”
� We need a system with some “taking turns” nature

Possible approachesPossible approaches
� Make sure the next lock-acquisition race condition party

has a “fair outcome”
� This may not be obvious

� Add fairness via the lock release procedure
� Somebody is “in charge”; let's leverage that

15-410, F'0819

Ensuring Bounded Waiting

LockLock

waiting[i] = true; /*Declare interest*/

got_it = false;

while (waiting[i] && !got_it)

 got_it = xchg(&lock_available,

 false);

waiting[i] = false;

15-410, F'0820

Ensuring Bounded Waiting

UnlockUnlock

j = (i + 1) % n;

while ((j != i) && !waiting[j])

 j = (j + 1) % n;

if (j == i)

 xchg(&lock_available, true); /*W*/

else

 waiting[j] = false;

15-410, F'0821

Ensuring Bounded Waiting

Versus (previous edition of) textbookVersus (previous edition of) textbook
� Exchange vs. TestAndSet
� “Available” vs. “locked”
� Atomic release vs. normal memory write

� Text does “blind write” at point “W”

 lock_available = true;
� This may be illegal on some machines
� Unlocker may be required to use special memory access

� Exchange, TestAndSet, etc.

15-410, F'0822

Evaluation

One awkward requirementOne awkward requirement

One unfortunate behaviorOne unfortunate behavior

15-410, F'0823

Evaluation

One awkward requirementOne awkward requirement
� Everybody knows size of thread population

� Always & instantly!
� Or uses an upper bound

One unfortunate behaviorOne unfortunate behavior
� Recall: expect zero competitors
� Algorithm: O(n) in maximum possible competitors

Is this criticism too harsh?Is this criticism too harsh?
� After all, Baker's Algorithm has these misfeatures. ..

15-410, F'0824

Looking Deeper

Look beyond abstract semanticsLook beyond abstract semantics
� Mutual exclusion, progress, bounded waiting

ConsiderConsider
� Typical access pattern
� Particular runtime environments

EnvironmentEnvironment
� Uniprocessor vs. Multiprocessor

� Who is doing what when we are trying to lock/unlock ?
� Threads aren't mysteriously “running” or “not runni ng”

� Decision made by scheduling algorithm with properti es

15-410, F'0825

Uniprocessor Environment

LockLock
� What if xchg() didn't work the first time?

15-410, F'0826

Uniprocessor Environment

LockLock
� What if xchg() didn't work the first time?
� Some other process has the lock

� That process isn't running (because we are)
� xchg() loop is a waste of time
� We should let the lock-holder run instead of us

15-410, F'0827

Uniprocessor Environment

LockLock
� What if xchg() didn't work the first time?
� Some other process has the lock

� That process isn't running (because we are)
� xchg() loop is a waste of time
� We should let the lock-holder run instead of us

UnlockUnlock
� What about bounded waiting?
� When we mark mutex available, who wins next?

15-410, F'0828

Uniprocessor Environment

LockLock
� What if xchg() didn't work the first time?
� Some other process has the lock

� That process isn't running (because we are)
� xchg() loop is a waste of time
� We should let the lock-holder run instead of us

UnlockUnlock
� What about bounded waiting?
� When we mark mutex available, who wins next?

� Whoever runs next..only one at a time! (“Fake competition”)
� How unfair are real OS kernel thread schedulers?
� If scheduler is vastly unfair, the right thread wil l never run!

15-410, F'0829

Multiprocessor Environment

LockLock
� Spin-waiting probably justified

� (why?)

UnlockUnlock
� Next xchg() winner “chosen” by memory hardware
� How unfair are real memory controllers?

15-410, F'0830

Test&Set

boolean testandset(int32 *lock) {

register boolean old;

 old = *lock; /* bus is locked */

 lock = true; / bus is locked */

 return (old);

}

Conceptually simpler than XCHG?Conceptually simpler than XCHG?
� Or not

15-410, F'0831

Load-linked, Store-conditional

For multiprocessorsFor multiprocessors
� “Bus locking considered harmful”

Split XCHG into halvesSplit XCHG into halves
� Load-linked(addr) fetches old value from memory
� Store-conditional(addr,val) stores new value back

� If nobody else stored to that address in between
� If so, instruction “fails” (sets an error code)

15-410, F'0832

Load-linked, Store-conditional

loop: LL R3, mutex_addr

 BEQ R3, $0, loop # avail == 0

 LI R3, 0 # prep. 0

 SC R3, mutex_addr # write 0?

 BEQ R3, $0, loop # aborted...

Your cache “snoops” the shared memory busYour cache “snoops” the shared memory bus
� Locking would shut down all memory traffic
� Snooping allows all traffic, watches for conflicting traffic
� Are aborts “ok”? When are they “ok”?

15-410, F'0833

Intel i860 magic lock bit

Instruction sets processor in “lock mode”Instruction sets processor in “lock mode”
� Locks bus
� Disables interrupts

Isn't that dangerous?Isn't that dangerous?
� 32-instruction countdown timer triggers exception
� Any exceptions (page fault, zero divide, ...) unloc k bus

Why would you want this?Why would you want this?
� Implement test&set, compare&swap, semaphore – you

choose

15-410, F'0834

Mutual Exclusion: Inscrutable
Software
Lamport's “Fast Mutual Exclusion” algorithmLamport's “Fast Mutual Exclusion” algorithm

� 5 writes, 2 reads (if no contention)
� Not bounded-waiting (in theory, i.e., if contention)
� http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR -

7.html

Cool magic - why not use it?Cool magic - why not use it?
� What kind of memory writes/reads?
� Remember, the computer is “modern”...

15-410, F'0835

Passing the Buck?

Q: Why not ask the OS for mutex_lock() Q: Why not ask the OS for mutex_lock() system callsystem call ??

Easy on a uniprocessor...Easy on a uniprocessor...
� Kernel automatically excludes other threads
� Kernel can easily disable interrupts
� No need for messy unbounded loop, weird XCHG...

Kernel has special power on a multiprocessorKernel has special power on a multiprocessor
� Can issue “remote interrupt” to other CPUs
� No need for messy unbounded loop...

So why So why notnot rely on OS? rely on OS?

15-410, F'0836

Passing the Buck

A: Too expensiveA: Too expensive
� Because... (you know this song!)

15-410, F'0837

Mutual Exclusion: Tricky
Software
Fast Mutual Exclusion for UniprocessorsFast Mutual Exclusion for Uniprocessors

� Bershad, Redell, Ellis: ASPLOS V (1992)

Want uninterruptable instruction sequences?Want uninterruptable instruction sequences?
� Pretend!

 scash = store->cash;

 scash += 10;

 wallet -= 10;

 store->cash = scash;
� Uniprocessor: interleaving requires thread switch.. .
� Short sequence almost always won't be interrupted...

15-410, F'0838

How can that work??

Kernel Kernel detectsdetects “context switch in atomic sequence” “context switch in atomic sequence”
� Maybe a small set of instructions
� Maybe particular memory areas
� Maybe a flag

 no_interruption_please = 1;

Kernel Kernel handleshandles unusual case unusual case
� Hand out another time slice? (Is that ok?)
� Hand-simulate unfinished instructions (yuck?)
� “Idempotent sequence”: slide PC back to start

15-410, F'0839

Summary

Atomic instruction sequenceAtomic instruction sequence
� Nobody else may interleave same/”related” sequence

Specify interfering sequences via Specify interfering sequences via mutex objectmutex object

Inside a mutexInside a mutex
� Last time: race-condition memory algorithms
� Atomic-exchange, Compare&Swap, Test&Set, ...
� Load-linked/Store-conditional
� Tricky software, weird software

Mutex strategyMutex strategy
� How should you behave given runtime environment?

