
15-410, F'081

Synchronization #3
Sep. 17, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L10a_Synch

15-410
“...Arguably less wrong...”

15-410, F'082

Synchronization

Project 2 out todayProject 2 out today
� Writeup this afternoon

� A fair amount of reading

� Tarball afternoon/evening

Speaker this eveningSpeaker this evening
� Carrie Price, Sandia National Labs

� 17:30-18:30
� Advanced Malware Trends and Analysis
� Advanced pizza trends and eating
� Advanced reminiscing about 15-410

15-410, F'083

Outline

Synch 1Synch 1
� Two building blocks
� Three requirements for mutual exclusion
� Algorithms people don't use for mutual exclusion

Synch 2Synch 2
� How mutual exclusion is really implemented

Synch 3Synch 3
� Condition variables

� Under the hood
� The atomic-sleep problem

� Semaphores, monitors – overview

15-410, F'084

Road Map

Two Fundamental operationsTwo Fundamental operations
� Atomic instruction sequence

�Voluntary de-scheduling

15-410, F'085

Voluntary de-scheduling

The SituationThe Situation
� You hold lock on shared resource
� But it's not in “the right mode”

Action sequenceAction sequence
� Unlock shared resource
� Write down “wake me up when...”
� Go to sleep until resource changes state

15-410, F'086

What Not to do

while (!reckoning) {

 mutex_lock(&scenario_lk);

 if ((date >= 1906-04-18) &&

 (hour >= 5))

 reckoning = true;

 else

 mutex_unlock(&scenario_lk);

}

wreak_general_havoc();

mutex_unlock(&scenario_lk);

15-410, F'087

What Not To Do

Why is this wrong?Why is this wrong?
� Make sure you understand!
� See previous two lectures
� Do not do this in P2 or P3

� Not even if it is really tempting in P3

15-410, F'088

“Arguably Less Wrong”
while (!reckoning) {

 mutex_lock(&scenario_lk);

 if ((date >= 1906-04-18) &&

 (hour >= 5))

 reckoning = true;

 else {

 mutex_unlock(&scenario_lk);

 sleep(1);

 }

}

wreak_general_havoc();

mutex_unlock(&scenario_lk);

15-410, F'089

“Arguably Less Wrong”

Don't do this eitherDon't do this either
� How wrong is “sleep(1)”?

15-410, F'0810

Arguably Less Wrong

Don't do this eitherDon't do this either
� How wrong is “sleep(1)”?

� N-1 times it's much too short
� Nth time it's much too long

15-410, F'0811

Arguably Less Wrong

Don't do this eitherDon't do this either
� How wrong is “sleep(1)”?

� N-1 times it's much too short
� Nth time it's much too long
� It's wrong every time

15-410, F'0812

Arguably Less Wrong

Don't do this eitherDon't do this either
� How wrong is “sleep(1)”?

� N-1 times it's much too short
� Nth time it's much too long
� It's wrong every time

� What's the problem?

15-410, F'0813

Arguably Less Wrong

Don't do this eitherDon't do this either
� How wrong is “sleep(1)”?

� N-1 times it's much too short
� Nth time it's much too long
� It's wrong every time

� What's the problem?
� We don't really want a duration!
� We want to wait for a condition

15-410, F'0814

Something Is Missing...

�� “ “ Protect shared state” is solvedProtect shared state” is solved
� We use a “mutex object”
� Also encapsulates “Which code interferes with this? ”
� Good

�� How to solve “sleep for the right duration”?How to solve “sleep for the right duration”?

15-410, F'0815

Something Is Missing

�� “ “ Protect shared state” is solvedProtect shared state” is solved
� We use a “mutex object”
� Also encapsulates “Which code interferes with this”
� Good

�� How to solve “sleep for the right duration”?How to solve “sleep for the right duration”?
� Get an expert to tell us!
� Encapsulate “the right duration”...

� ...into a condition variable object

15-410, F'0816

Once More, With Feeling!

mutex_lock(&scenario_lk);

while (cvarp = wait_on()) {

 cond_wait(cvarp, &scenario_lk);

}

wreak_general_havoc(); /* locked! */

mutex_unlock(&scenario_lk);

15-410, F'0817

wait_on()?

if (y < 1906)

 return (&new_year);

else if (m < 4)

 return (&new_month);

else if (d < 18)

 return (&new_day);

else if (h < 5)

 return (&new_hour);

else

 return (0);

15-410, F'0818

What Wakes Us Up?

for (y = 1900; y < 2000; y++)

 for (m = 1; m <= 12; m++)

 for (d = 1; d <= days(m); d++)

 for (h = 0; h < 24; h++)

 ...

 cond_broadcast(&new_hour);

 cond_broadcast(&new_day);

 cond_broadcast(&new_month);

 cond_broadcast(&new_year);

15-410, F'0819

Condition Variable Requirements

Keep track of threads asleep “for a while”Keep track of threads asleep “for a while”

Allow notifier thread to wake sleeping thread(s)Allow notifier thread to wake sleeping thread(s)

Must be thread-safeMust be thread-safe
� Many threads may call condition_wait() at same time
� Many threads may call condition_signal() at same ti me
� Say, those look like “interfering sequences”...

15-410, F'0820

Why Two Parameters?

condition_wait(&cvar, &mutex);

Mutex required to examine/modify the “world” stateMutex required to examine/modify the “world” state

Whoever awakens you will need to hold that mutexWhoever awakens you will need to hold that mutex
� So you'd better give it up.

When you wake up, you will need to hold it againWhen you wake up, you will need to hold it again
� “Convenient” for condition_wait() to un-lock/re-loc k

But there's something more subtleBut there's something more subtle

15-410, F'0821

Inside a Condition Variable

cvar->queuecvar->queue
� of sleeping processes
� FIFO, or more exotic

cvar->mutexcvar->mutex
� Protects queue against interfering wait()/signal() calls
� This isn't the caller's mutex (locking caller's wor ld state)
� This is our secret invisible mutex

15-410, F'0822

Inside a Condition Variable
cond_wait(cvar, world_mutex)

{

 lock(cvar->mutex);

 enq(cvar->queue, my_thread_id());

 unlock(world_mutex);

 ATOMICALLY {

 unlock(cvar->mutex);

 kernel_please_pause_this_thread();

 }

 lock(world_mutex);

}

What is this “ATOMICALLY” stuff?What is this “ATOMICALLY” stuff?

15-410, F'0823

What We Hope For

cond_wait(m, c); cond_signal(c);
enq(c->que, me);
unlock(m);
unlock(c->m);
kern_thr_pause();

lock(c->m);
id = deq(c->que);
kern_thr_wake(id);
unlock(c->m);

15-410, F'0824

Pathological Execution Sequence

cond_wait(m, c); cond_signal(c);
enq(c->que, me);
unlock(m);
unlock(c->m);

lock(c->m);
id = deq(c->que);
kern_thr_wake(id);
unlock(c->m);

kern_thr_pause();

kern_thr_wake(id) � ERR_NOT_ASLEEP

15-410, F'0825

Achieving wait() Atomicity

Disable interrupts (if you are a kernel)Disable interrupts (if you are a kernel)

Rely on OS to implement condition variablesRely on OS to implement condition variables
� (Why is this not the best idea?)

Have a better kernel thread-sleep interfaceHave a better kernel thread-sleep interface

Hmmm....Hmmm....

15-410, F'0826

Achieving wait() Atomicity

P2 challengesP2 challenges
� Understand the issues!

� mutex, cvar

� Understand the host kernel we give you
� Put the parts together

� Don't use “wrong” or “arguably less wrong” approach es!
� Seek solid, clear solutions

� There's more than one way to do it
� Make sure to pick a correct way...
� Try to pick a good way.

15-410, F'0827

Outline

Last timeLast time
� How mutual exclusion is really implemented

Condition variablesCondition variables
� Under the hood
� The atomic-sleep problem

�� SemaphoresSemaphores

MonitorsMonitors

15-410, F'0828

Semaphore Concept

Semaphore is a different encapsulation objectSemaphore is a different encapsulation object
� Can produce mutual exclusion
� Can produce sleep-until-it's-time

Intuition: counted resourceIntuition: counted resource
� Integer represents “number available”

� Semaphore object initialized to a particular count

� Thread blocks until it is allocated an instance

15-410, F'0829

Semaphore Concept

wait(), aka P(), aka proberen (“wait”)wait(), aka P(), aka proberen (“wait”)
� wait until value > 0
� decrement value (“taking” one instance)

signal(), aka V(), aka verhogen (“increment”)signal(), aka V(), aka verhogen (“increment”)
� increment value (“releasing” one instance)

Just one small issue...Just one small issue...
� wait() and signal() must be atomic

15-410, F'0830

“Mutex-style” Semaphore

semaphore m = 1;

do {

 wait(m); /* mutex_lock() */

 ..critical section...

 signal(m); /* mutex_unlock() */

 ...remainder section...

} while (1);

15-410, F'0831

“Condition-style” Semaphore

Thread 0 Thread 1
wait(c);

result = 42;
signal(c);

use(result);

15-410, F'0832

“Condition with Memory”

Semaphores retain memory of signal() events
“full/empty bit” - unlike condition variables

Thread 0 Thread 1
result = 42;
signal(c);

wait(c);
use(result);

15-410, F'0833

Semaphore vs. Mutex/Condition

Good newsGood news
� Semaphore is a higher-level construct
� Integrates mutual exclusion, waiting
� Avoids mistakes common in mutex/condition API

� signal() too early is “lost”
� ...

15-410, F'0834

Semaphore vs. Mutex/Condition

Bad newsBad news
� Semaphore is a higher-level construct
� Integrates mutual exclusion, waiting

� Some semaphores are “mutex-like”
� Some semaphores are “condition-like”
� How's a poor library to know?

� Spin-wait or not???

15-410, F'0835

Semaphores - 31 Flavors

Binary semaphoreBinary semaphore
� It counts, but only from 0 to 1!

� “Available” / “Not available”

� Consider this a hint to the implementor...
� “Think mutex!”

Non-blocking semaphoreNon-blocking semaphore
� wait(semaphore, timeout);

Deadlock-avoidance semaphoreDeadlock-avoidance semaphore
� #include <deadlock.lecture>

15-410, F'0836

My Personal Opinion

OneOne “simple, intuitive” “simple, intuitive” synchronization object synchronization object
� In 31 performance-enhancing flavors!!!

““ The nice thing about standards is that you have so The nice thing about standards is that you have so
many to choose from.”many to choose from.”

� Andrew S. Tanenbaum

Conceptually simpler to have two objectsConceptually simpler to have two objects
� One for mutual exclusion
� One for waiting
� ...after you've understood what's actually happenin g

15-410, F'0837

Semaphore Wait: Inside Story
wait(semaphore s)

 ACQUIRE EXCLUSIVE ACCESS

 --s->count;

 if (s->count < 0)

 enqueue(s->queue, my_id());

 ATOMICALLY

 RELEASE EXCLUSIVE ACCESS

 thread_pause()

 else

 RELEASE EXCLUSIVE ACCESS

15-410, F'0838

Semaphore Signal: Inside Story
signal(semaphore s)

 ACQUIRE EXCLUSIVE ACCESS

 ++s->count;

 if (s->count <= 0) {

 tid = dequeue(s->queue);

 thread_wakeup(tid);

 RELEASE EXCLUSIVE ACCESS

What's all the shouting?What's all the shouting?
� An exclusion algoritm much like a mutex, or
� OS-assisted atomic de-scheduling

15-410, F'0839

Monitor
Basic conceptBasic concept

� Semaphores eliminate some mutex/condition mistakes
� Still some common errors

� Swapping “signal()” & “wait()”
� Accidentally omitting one

Monitor: higher-level abstractionMonitor: higher-level abstraction
� Module of high-level language procedures

� All access some shared state

� Compiler adds synchronization code
� Thread running in any procedure blocks all thread entries

15-410, F'0840

Monitor “commerce”
int cash_in_till[N_STORES] = { 0 };

int wallet[N_CUSTOMERS] = { 0 } ;

boolean buy(int cust, store, price) {

 if (wallet[cust] >= price) {

 cash_in_till[store] += price;

 wallet[cust] -= price;

 return (true);

 } else

 return (false);

}

15-410, F'0841

Monitors – What about waiting?

Automatic mutal exclusion is nice...Automatic mutal exclusion is nice...
� ...but it is too strong

Sometimes one thread needs to wait for anotherSometimes one thread needs to wait for another
� Automatic mutual exclusion forbids this
� Must leave monitor, re-enter - when?

Have we heard this “when” question before?Have we heard this “when” question before?

15-410, F'0842

Monitor Waiting – The Problem

void

stubbornly_cash_check(acct a, check c)

{

 while (account[a].bal < check.val) {

 ...Sigh, must wait for a while...

 ...What goes here? I forget...

 }

 account[a].bal -= check.val;

}

15-410, F'0843

Monitor Waiting – Wrong Solution

boolean

try_cash_check(acct a, check c)

{

 if (account[a].bal < check.val)

 return (false); /* pass the buck */

 account[a].bal -= check.val;

 return (true);

}

15-410, F'0844

Monitor condition variables

Similar to condition variables we've seenSimilar to condition variables we've seen

condition_wait(cvar)condition_wait(cvar)
� Only one parameter
� Mutex-to-drop is implicit

� (the “monitor mutex”)

� Operation
� “Temporarily exit monitor” -- drop the mutex
� Wait until signalled
� “Re-enter monitor” - re-acquire the mutex

15-410, F'0845

Monitor Waiting

void

stubbornly_cash_check(acct a, check c)

{

 while (account[a].bal < check.val) {

 cond_wait(account[a].activity);

 }

 account[a].bal -= check.val;

}

Q: Who would signal() this cvar?Q: Who would signal() this cvar?

15-410, F'0846

Monitor condition variables

signal() policy question - which thread to run?signal() policy question - which thread to run?
� Signalling thread? Signalled thread?

� Can argue either way

� Or: signal() exits monitor as side effect!
� Different signal() policies mean different monitor flavors

15-410, F'0847

Summary

Two fundamental operationsTwo fundamental operations
� Mutual exclusion for must-be-atomic sequences
� Atomic de-scheduling (and then wakeup)

Mutex/condition-variable (“pthreads”) styleMutex/condition-variable (“pthreads”) style
� Two objects for two core operations

Semaphores, MonitorsSemaphores, Monitors
� Semaphore: one object
� Monitor: invisible compiler-generated object
� Same core ideas inside

15-410, F'0848

Summary

What you should knowWhat you should know
� Issues/goals
� Underlying techniques
� How environment/application design matters

All done with synchronization?All done with synchronization?
� Only one minor issue left

� Deadlock

