15-410

“...Arguably less wrong...”

Synchronization #3
Sep. 17, 2008

Dave Eckhardt
Roger Dannenberg

L10a_Synch

15-410, F'08

Synchronization

Project 2 out today
- Writeup this afternoon
* A fair amount of reading

- Tarball afternoon/evening

Speaker this evening
- Carrie Price, Sandia National Labs
e 17:30-18:30
* Advanced Malware Trends and Analysis
* Advanced pizza trends and eating
* Advanced reminiscing about 15-410

15-410, F'08

Outline

Synch 1
— Two building blocks
- Three requirements for mutual exclusion
- Algorithms people don't use for mutual exclusion

Synch 2

- How mutual exclusion is really implemented

Synch 3

- Condition variables
* Under the hood
* The atomic-sleep problem

- Semaphores, monitors —overview

15-410, F'08

Road Map

Two Fundamental operations
v Atomic instruction sequence

B Voluntary de-scheduling

15-410, F'08

Voluntary de-scheduling

The Situation
- You hold lock on shared resource
- But it's not in “the right mode”

Action sequence
- Unlock shared resource
- Write down “wake me up when...”
- Go to sleep until resource changes state

15-410, F'08

What Not to do

whil e (!reckoning) {
mut ex_I| ock(&scenario_| k) ;
if ((date >= 1906-04-18) &&

(hour >= 5))
reckoni ng = true;
el se

mut ex_unl ock(&scenari o_I| k);

}

wr eak general havoc();
mut ex_unl ock(&scenari o_I| k);

15-410, F'08

What Not To Do

Why is this wrong?
- Make sure you understand!
- See previous two lectures

- Do not do this in P2 or P3
* Notevenifitis really tempting inP3

15-410, F'08

“Arguably Less Wrong”

whil e (!reckoni ng) {

mut ex_| ock(&scenario | Kk);

1 f ((date >= 1906-04-18) &&
(hour >= 5))
reckoni ng = true;

el se {
mut ex_unl ock(&scenari o_I| k);
sl eep(l);

}
}

wr eak _general havoc();

mut ex_unl ock(&scenari o | k); 15410 F'08

“Arguably Less Wrong”

Don't do this either
- How wrong is “sleep(1)"?

15-410, F'08

10

Arguably Less Wrong

Don't do this either
- How wrong is “sleep(1)"?
* N-1 times it's much too short
* Nth time it's much too long

15-410, F'08

11

Arguably Less Wrong

Don't do this either
- How wrong is “sleep(1)"?
* N-1 times it's much too short

* Nth time it's much too long
* It'swrong every time

15-410, F'08

12

Arguably Less Wrong

Don't do this either
- How wrong is “sleep(1)"?
* N-1 times it's much too short
* Nth time it's much too long
* It'swrong every time

- What's the problem?

15-410, F'08

13

Arguably Less Wrong

Don't do this either
- How wrong is “sleep(1)"?
* N-1 times it's much too short

* Nth time it's much too long
* It'swrong every time

- What's the problem?
* We don't really want a duration!
* We want to wait for a condition

15-410, F'08

14

Something Is Missing...

v “Protect shared state” is solved

- We use a “mutex object”
- Also encapsulates “Which code interferes with this?
- Good

> How to solve “sleep for the right duration™?

15-410, F'08

15

Something Is Missing

v “Protect shared state” is solved
- We use a “mutex object”

- Also encapsulates “Which code interferes with this”

- Good

> How to solve “sleep for the right duration™?

- Get an expert to tell us!

- Encapsulate “the right duration”...
* ...into a condition variable object

15-410, F'08

Once More, With Feeling!

mut ex_| ock(&scenario | k);

while (cvarp = wait _on()) {
cond_wait(cvarp, &scenario_|Kk);

}

wr eak _general havoc(); /* | ocked!

mut ex_unl ock(&scenari o | k) ;

16

*/

15-410, F'08

17

walit_on()?

if (y < 1906)

return (&new year),;
else if (m< 4)

return (&new nonth);
else if (d < 18)

return (&new day);
else if (h <5)

return (&new hour);
el se

return (0);

15-410, F'08

18

What Wakes Us Up?

for (y = 1900; y < 2000; y++)
for (m=1;, m<= 12; mt+)
for (d = 1; d <= days(n); d++)
for (h = 0; h < 24; h++)

cond_broadcast (&ew _hour) ;
cond_broadcast (&new day) ;
cond_broadcast (&hew _nont h) ;
cond_br oadcast (&ew year);

15-410, F'08

Condition Variable Requirements

Keep track of threads asleep “for a while”
Allow natifier thread to wake sleeping thread(s)

Must be thread-safe
- Many threads may call condition_wait() at same time
- Many threads may call condition_signal() at sameti me
- Say, those look like “interfering sequences”...

19 15-410, F'08

Why Two Parameters?

condition wait(&var, &nutex);
Mutex required to examine/modify the “world” state

Whoever awakens you will need to hold that mutex
- So you'd better give it up.

When you wake up, you will need to hold it again
- “Convenient” for condition_wait() to un-lock/re-loc K

But there's something more subtle

20 15-410, F'08

21

Inside a Condition Variable

cvar->queue
- of sleeping processes
- FIFO, or more exotic

cvar->mutex
- Protects queue against interfering wait()/signal()
- This isn't the caller's mutex (locking caller's wor
— This is our secret invisible mutex

calls
|d state)

15-410, F'08

Inside a Condition Variable

cond wait(cvar, world nutex)
{
| ock(cvar - >nut ex) ;
eng(cvar - >queue, ny thread id()):
unl ock(wor | d_rnut ex) ;
ATOM CALLY {
unl ock(cvar - >nut ex) ;

kernel pl ease pause this thread();

}

| ock(wor | d_nut ex) ;

}

22th':lt IS this “ATOMICALLY" stuff?

15-410, F'08

23

What We Hope For

cond_wait(m, c);

cond_signal(c);

eng(c->que, ne);

unl ock(m ;

unl ock(c->m ;

kern_thr _pause();

| ock(c->m;

id = deqg(c->que);

kern_thr_wake(id);

unl ock(c->m ;

15-410, F'08

Pathological Execution Sequence

cond wait(m, c); cond _signal(c);
eng(c- >que, ne);
unl ock(m ;

unl ock(c->m;

| ock(c->m;

| d = deq(c->que);
kern_thr_wake(1d);
unl ock(c->m;

kern_t hr _pause();

24kern_t hr wake(id) = ERR NOT_ASLEEP

15-410, F'08

25

Achieving wait() Atomicity

Disable interrupts (if you are a kernel)

Rely on OS to implement condition variables
- (Why is this not the best idea?)

Have a better kernel thread-sleep interface
Hmmm....

15-410, F'08

26

Achieving wait() Atomicity

P2 challenges

- Understand the issues!
o mutex, cvar

- Understand the host kernel we give you

- Put the parts together
* Don't use “wrong” or “arguably less wrong” approach
* Seek solid, clear solutions
- There's more than one way to do it
- Make sure to pick a correct way...
- Try to pick a good way.

es!

15-410, F'08

27

Outline

Last time
- How mutual exclusion is really implemented

Condition variables
- Under the hood
- The atomic-sleep problem

= Semaphores

Monitors

15-410, F'08

28

Semaphore Concept

Semaphore is a different encapsulation object
- Can produce mutual exclusion
- Can produce sleep-until-it's-time

Intuition: counted resource

- Integer represents “number available”
* Semaphore object initialized to a particular count

- Thread blocks until it is allocated an instance

15-410, F'08

Semaphore Concept

wait(), aka P(), aka proberen (“wait")
- wait until value >0
- decrement value (“taking” one instance)

signal(), aka V(), aka verhogen (“increment”)
- Increment value (“releasing” one instance)

Just one small issue...
- wait() and signal() must be atomic

29

15-410, F'08

30

“Mutex-style” Semaphore
semaphore m = 1;

do {
wait(m; /* mutex_lock() */
..critical section...
signal (m; /* mutex _unlock() */

... remal nder section...
} while (1);

15-410, F'08

31

“Condition-style” Semaphore

Thread O

Thread 1

wait(c);

result = 42;

signal (c);

use(result);

15-410, F'08

32

“Condition with Memory”

Semaphoresstain memory of signal() events
“full/lempty bit” - unlike condition variables

Thread O

Thread 1

result = 42;

signal (c);

wait(c);

use(result);

15-410, F'08

33

Semaphore vs. Mutex/Condition

Good news
- Semaphore is a higher-level construct
- Integrates mutual exclusion, waiting

- Avoids mistakes common in mutex/condition API
* signal() too early is “lost”

15-410, F'08

34

Semaphore vs. Mutex/Condition

Bad news
- Semaphore is a higher-level construct

- Integrates mutual exclusion, waiting
* Some semaphores are “mutex-like”
* Some semaphores are “condition-like”
* How's a poor library to know?
- Spin-wait or not???

15-410, F'08

Semaphores - 31 Flavors

Binary semaphore

- It counts, but only from O to 1!
* “Available” / “Not available”

- Consider this a hint to the implementor...
* “Think mutex!”

Non-blocking semaphore
- wait(semaphore, timeout);

Deadlock-avoidance semaphore
- #include <deadlock.lecture>

35

15-410, F'08

36

My Personal Opinion

One “simple, intuitive” synchronization object
- In 31 performance-enhancing flavors!!!

“The nice thing about standards is that you have so
many to choose from.”

- Andrew S. Tanenbaum

Conceptually simpler to have two objects
- One for mutual exclusion
- One for waiting
- ...after you've understood what's actually happenin g

15-410, F'08

Semaphore Walit: Inside Story

wai t (semaphore s)

ACQUI RE EXCLUSI VE ACCESS

--S->count;

1 f (s->count < 0)
enqueue(s- >queue, ny i1d());
ATOM CALLY

RELEASE EXCLUSI VE ACCESS
t hread pause()

el se
RELEASE EXCLUSI VE ACCESS

15-410, F'08

38

Semaphore Signal: Inside Story

si gnal (semaphore s)
ACQUI RE EXCLUSI VE ACCESS
++S- >count ;
1 f (s->count <= 0) {
tid = dequeue(s->queue);
t hread wakeup(tid);
RELEASE EXCLUSI VE ACCESS

What's all the shouting?
- An exclusion algoritm much like a mutex, or
- 0OS-assisted atomic de-scheduling

15-410, F'08

39

Monitor

Basic concept
- Semaphores eliminate some mutex/condition mistakes

- Still some common errors
* Swapping “signal()”’ & “wait()”
* Accidentally omitting one

Monitor: higher-level abstraction

- Module of high-level language procedures
* All access some shared state

- Compiler adds synchronization code
* Thread running in any procedure blocks all thread entries

15-410, F'08

40

Monitor “commerce”

int cash in till[NSTORES] ={ 0 };
int wallet[N CUSTOVERS] = { 0 } ;

bool ean buy(int cust, store, price) {
1 f (wallet[cust] >= price) {
cash in till[store] += price;
wal l et[cust] -= price;
return (true);
} el se
return (false);

15-410, F'08

41

Monitors —What about waiting?

Automatic mutal exclusion is nice...
- ...but it is too strong

Sometimes one thread needs to wait for another
- Automatic mutual exclusion forbids this
- Must leave monitor, re-enter - when?

Have we heard this “when” question before?

15-410, F'08

42

Monitor Waiting —The Problem

voi d
st ubbornly cash_check(acct a, check c)
{
whil e (account[a].bal < check.val) {
...3gh, nust wait for a while...
... \What goes here? | forget...

}

account[a].bal -= check.val;

}

15-410, F'08

Monitor Waiting —Wrong Solution

bool ean
try cash check(acct a, check c)
{
| f (account[a].bal < check.val)
return (false); /* pass the buck */
account[a].bal -= check.val;
return (true);

}

15-410, F'08

44

Monitor condition variables

Similar to condition variables we've seen

condition_wait(cvar)
- Only one parameter
- Mutex-to-drop is implicit
* (the “monitor mutex”)
- QOperation
* “Temporarily exit monitor” -- drop the mutex

* Wait until signalled
* “Re-enter monitor” - re-acquire the mutex

15-410, F'08

45

Monitor Waiting

voi d
st ubbornly cash _check(acct a, check c)

{

whil e (account[a].bal < check.val) {
cond wait(account[a].activity);

}

account[a].bal -= check.val;

}

Q: Who would signal() this cvar?

15-410, F'08

46

Monitor condition variables

signal() policy question - which thread to run?

- Signalling thread? Signalled thread?
* Can argue either way

- Or: signal() exits monitor as side effect!
- Different signal() policies mean different monitor

flavors

15-410, F'08

Summary

Two fundamental operations
- Mutual exclusion for must-be-atomic sequences
- Atomic de-scheduling (and then wakeup)

Mutex/condition-variable (“pthreads”) style
- Two objects for two core operations

Semaphores, Monitors
- Semaphore: one object
- Monitor: invisible compiler-generated object
- Same core ideas inside

47

15-410, F'08

48

Summary

What you should know
- Issues/goals
- Underlying techniques
- How environment/application design matters

All done with synchronization?

- Only one minor issue left
* Deadlock

15-410, F'08

