
15-410, F'081

Yield
Sep. 22, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L12a_Yield

15-410
“...process_switch(P2) 'takes a while'...”

15-410, F'082

Synchronization

Thread library due tonightThread library due tonight
� Please follow hand-in procedure on Projects page

15-410, F'083

Synchronization

Thread library due tonightThread library due tonight
� Just kidding!

Who has...Who has...
� ...read handouts?
� ...unpacked tarball?
� ...issued a system call?
� ...drawn stack pictures?
� ...had a thread killed due to a page fault?
� ...set up your mail client to alert you to .announc e posts?

15-410, F'084

Synchronization

We hope you use the milestones and attack planWe hope you use the milestones and attack plan
� Pitfalls exist and we hope to steer you away

Take advantage of course staffTake advantage of course staff
� If you see me I may require you to draw me pictures
� Because this is very likely to help

15-410, F'085

Road Map (subject to change)

TodayToday
� Yield

Upcoming topicsUpcoming topics
� Deadlock 1, Deadlock 2, VM 1, P3, Exam review

P2 Q&A sessionP2 Q&A session
� Friday or Monday, your choice

� Friday Q&A would probably make weekend more product ive
� But only if you bring questions to class Friday

» If the class isn't “ripe” I'll wait until Monday
» “I'll bring a lecture...don't make me use it!”

15-410, F'086

Road Map

Day Option 1 Option 2
Monday Yield Yield
Wednesday Deadlock Deadlock
Friday P2 questions Deadlock
Monday Deadlock P2 questions
Wednesday VM1 VM1
Friday P3 (P2 due)P3 (P 2 due)

My suggestion: Option 1
Either will require you to come to class with questions!
(A lecture will be prepared..don't make us use it)

15-410, F'087

Outline

Context switchContext switch
� Motivated by yield()
� This is a core idea of this class

� You will benefit if your P3 context switch is clean and solid
� There's more than one way to do it

� Even more than one good way
� As with P2 thread_fork , part of the design is figuring

out what parameters context_switch() should take...

� This lecture is “early”
� Struggle with it today
� Hopefully it'll be easier when you struggle with it in P3

� Note: today we'll talk about every kind of thread but P2

15-410, F'088

Mysterious yield()

T1() {

 while (1)

 yield(T2);

}

T2() {

 while (1)

 yield(T1);

}

15-410, F'089

User-space Yield

Consider Consider pure user-space threadspure user-space threads
� You implement threads inside a single-threaded proc ess
� There is no thread_fork ...
� The opposite of Project 2

What is a thread in that world?What is a thread in that world?
� A stack
� “Thread control block” (TCB)

� Locator for register-save area
� Housekeeping information

15-410, F'0810

Big Picture

Thread blocks

Thread stacks

Code, Data

15-410, F'0811

User-space Yield

yield(user-thread-3)yield(user-thread-3)
save my registers on stack

/* magic happens here */

restore thread 3's registers from thread 3's stack

return; /* to thread 3! */

15-410, F'0812

Todo List

SaveSave
� General-purpose registers

� (floating-point registers: omitted)
� Stack pointer
� Program counter

Which value to save for each?Which value to save for each?
� The value we want the register to have after restor e is

done

RestoreRestore
� Same list as “save”
� Not our values: the target's values

15-410, F'0813

No magic!

/* C+asm() for slide notation only! */

yield(user-thread-3){
save registers on stack /* asm(...) */
tcb-> sp = get_esp(); /* asm(...) */
tcb-> pc = &there; /* gcc ext. */
tcb = findtcb(user-thread-3);
set_esp(tcb-> sp); /* asm(...) */
jump(tcb-> pc); /* asm(...) */

there:
restore registers from stack /* asm() */
return;

}

15-410, F'0814

The Program Counter

What values can the PC (%eip) contain?What values can the PC (%eip) contain?
� In a pure user-thread environment, thread switch

happens only in yield()
� Yield sets saved PC to address of first “restore re gisters”

instruction

All non-running threads have the All non-running threads have the samesame saved PC saved PC
� Please make sure this makes sense to you

15-410, F'0815

Remove Unnecessary Code – 1

yield(user-thread-3){
save registers on stack
tcb-> sp = get_esp();
tcb-> pc = &there;
tcb = findtcb(user-thread-3);
set_esp(tcb-> sp);

jump(tcb-> pc &there);

there:
restore registers from stack
return

}

15-410, F'0816

Remove Unnecessary Code – 2

yield(user-thread-3){
save registers on stack
tcb-> sp = get_esp();
tcb-> pc = &there;
tcb = findtcb(user-thread-3);
set_esp(tcb-> sp);

jump(tcb-> pc &there);

there:
restore registers from stack
return

}

15-410, F'0817

Remove Unnecessary Code – 3

yield(user-thread-3){
save registers on stack
tcb-> sp = get_esp();
tcb = findtcb(user-thread-3);
set_esp(tcb-> sp);
restore registers from stack
return

}

15-410, F'0818

User Threads vs. Kernel
Processes
What if a What if a processprocess yields to another? yields to another?

� “Compare & contrast, in no more than 1,000 words... ”

User threadsUser threads
� Share memory
� Threads not protected from each other

ProcessesProcesses
� Do not generally share memory
� P1 must not modify P2's saved registers

Where are process save areas and control blocks?Where are process save areas and control blocks?

15-410, F'0819

Kernel Memory Picture

Kernel code

Control Blocks

Kernel stacks

User code

User stacks

15-410, F'0820

P1's Yield(P2) steps

P1 calls yield(P2)P1 calls yield(P2)

INT 50 INT 50 �� boom!boom!

Processor trap protocolProcessor trap protocol
� Saves some registers on P1's kernel stack

� This is a stack switch (user � kernel), intel-sys.pdf 5.10
� Top-of-kernel-stack specified by %esp0 register
� Trap frame (x86): %ss & %esp, %eflags, %cs & %eip

Assembly-language wrapperAssembly-language wrapper
� Saves more registers
� Starts C trap handler

Then...?Then...?

15-410, F'0821

P1's Yield(P2) steps
int sys_yield(int pid) {

 return (process_switch(pid));

}

Assembly-language wrapAssembly-language wrap
� Restores registers from P1's kernel stack, modulo % eax

Processor return-from-trap protocol (aka IRET)Processor return-from-trap protocol (aka IRET)
� Restores %ss & %esp, %eflags, %cs & %eip

INT 50 instruction “completes”INT 50 instruction “completes”
� Back in user-space

P1 yield() library routine returnsP1 yield() library routine returns

15-410, F'0822

What happened to P2??
process_switch(P2) “takes a while”process_switch(P2) “takes a while”

� When P1 calls it, it “returns” to P2
� When P2 calls it, it “returns” to P1 (eventually)

15-410, F'0823

Inside process_switch()

ATOMICALLYATOMICALLY
enqueue_tail(runqueue, cur_pcb);

save registers /* P1's stack */

cur_pcb = dequeueID(runqueue, P2);

stackpointer = cur_pcb->sp;

restore registers /* P2's stack */

return;

/* some details omitted */

15-410, F'0824

User-mode Yield vs. Kernel-mode

Kernel context switches happen for more reasonsKernel context switches happen for more reasons
� good old yield(), but also...
� Message passing from P1 to P2
� P1 sleeping on disk I/O, so run P2
� CPU preemption by clock interrupt

15-410, F'0825

I/O completion Example

P1 calls read()P1 calls read()

In kernelIn kernel
� read() starts disk read
� read() calls condition_wait(&buffer); /* details va ry */
� condition_wait() calls process_switch()

� In general, we want somebody else to run

� process_switch() returns to P2

15-410, F'0826

I/O Completion Example

While P2 is runningWhile P2 is running
� Disk completes read, interrupts P2 into kernel
� Interrupt handler calls condition_signal(&buffer);

Now what?Now what?

15-410, F'0827

I/O Completion Example

While P2 is runningWhile P2 is running
� Disk completes read, interrupts P2 into kernel
� Interrupt handler calls condition_signal(&buffer);

Option 1Option 1
� condition_signal() marks P1 as runnable, returns
� Interrupt handler returns to P2

15-410, F'0828

I/O Completion Example

While P2 is runningWhile P2 is running
� Disk completes read, interrupts P2 into kernel
� Interrupt handler calls condition_signal(&buffer);

Option 1Option 1
� condition_signal() marks P1 as runnable, returns
� Interrupt handler returns to P2

Option 2Option 2
� condition_signal() calls process_switch(P1) (only f air...)
� P2 will finish the interrupt handler much later

� Remember in P3 to confront implications of this!

15-410, F'0829

Clock interrupts

P1 doesn't “ask for” clock interruptP1 doesn't “ask for” clock interrupt
� Clock handler forces P1 into the kernel

� Kernel stack looks like a “system call”
� As if user process had called handle_timer()

� But it was involuntary

P1 doesn't say who to yield toP1 doesn't say who to yield to
� (it didn't make the “system call”)
� Scheduler chooses next process

15-410, F'0830

Summary

Similar steps for user space, kernel spaceSimilar steps for user space, kernel space

Primary differencesPrimary differences
� Kernel has open-ended competitive scheduler
� Kernel more interrupt-driven

Implications for 410 projectsImplications for 410 projects
� P2: firmly understand thread stacks

� thread_create() stack setup
� cleanup
� race conditions

� P3: firmly understand kernel context switch

Advice: draw pictures of stacksAdvice: draw pictures of stacks

