
15-410, F'081

#include
Sep. 22, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L12c_include

15-410
“...#ifndef DSFLK_FSFDDS_FSDFDS...”

15-410, F'082

Outline

#ifndef DSFLK_FSFDDS_FSDFDS#ifndef DSFLK_FSFDDS_FSDFDS

15-410, F'083

What's _STDIO_H_ anyway?

#ifndef _STDIO_H_

#define _STDIO_H_

typedef struct FILE {

 ...

} ...;

#endif /* _STDIO_H_ */

15-410, F'084

Archaeology

C is oldC is old

C doesn't have modulesC doesn't have modules

C has C has compilation unitscompilation units
� “Compilation unit” is the secret ANSI code word for “file”
� Compilers sort of know some file types: .c, .s
� Compilers don't really know about .h

� Auxiliary “pre-processor” brain (/lib/cpp) hides th em

People use People use conventionsconventions to get module-like C to get module-like C
� These conventions evolved slowly

15-410, F'085

The “.h Responsibility” Dilemma

Assume: “stdio module”Assume: “stdio module”

Assume: “network stack module”Assume: “network stack module”
� (Trust us, it's modular!)

Both need to knowBoth need to know
� What's a size_t on this machine, anyway?
� #include <sys/types.h>

15-410, F'086

Nested Responsibility

Program 1:Program 1:
� #include <stdio.h>

Program 2:Program 2:
� #include <netinet/tcp_var.h>

AssumeAssume
� Program 1, 2 don't need sys/types.h themselves

Solution 1Solution 1
� stdio.h and netinet/tcp_var.h each include sys/type s.h

15-410, F'087

Too Much

Program 3:Program 3:
� #include <stdio.h>
� #include <netinet/tcp_var.h>

ProblemProblem
� Now we get two copies sys/types.h
� Lots of whining about redefinitions
� Maybe compilation fails

15-410, F'088

Passing the Buck

Blame the user!Blame the user!

Solution 2Solution 2
� Require main program to #include <sys/types.h>
� Then the other .h files don't have to

ProblemProblem
� Annoying for user
� Modules' needs change over time

� Didn't you know? Since last night xxx needs yyy...

15-410, F'089

Solution: Idempotent .h files

.h responsibility.h responsibility
� Activate only once
� No matter how many times included
� Choose string “unlikely to be used elsewhere”

#ifndef _STDIO_H_

#define _STDIO_H_

...

#endif /* _STDIO_H_ */

15-410, F'0810

What Belongs In a .h?

Types (C: Types (C: declarationsdeclarations , not , not definitionsdefinitions))

Exported interface routines (“public methods”)Exported interface routines (“public methods”)

Constants (#define or enum)Constants (#define or enum)

Macros (when Macros (when appropriateappropriate))

Data items exported by moduleData items exported by module
� Try to avoid this
� Same reason as other languages: data != semantics

No code!No code!

15-410, F'0811

But What About...?

Real modules have multiple .c filesReal modules have multiple .c files
� Who declares internal data structures?

� To be shared by multiple files
� this is legitimate: internally, we agree on semanti cs

� Who declares internal functions?

Not “the” .h fileNot “the” .h file
� We don't want to publish internal details

Maybe a “.i” file?Maybe a “.i” file?
� Help?

15-410, F'0812

Use the Other .h File!

stdio.hstdio.h
� Included by module clients
� Included by module parts
� Available in /usr/include when stdio is installed

stdio_private.hstdio_private.h
� Included only by module parts
� Not made available in a public location (ideally)

*_private.h should be idempotent, too*_private.h should be idempotent, too

15-410, F'0813

Summary

#ifndef DSFLK_FSFDDS_FSDFDS#ifndef DSFLK_FSFDDS_FSDFDS
� Well, use a better string
� Used to make .h files idempotent

What What shouldshould go here, anyway? go here, anyway?
� There are two “here”'s here

� foo.h: public interface, available to public
� foo_private.h: internal communication, maybe unpubl ished

