
1

Deadlock (1)

Roger Dannenberg
Dave Eckhardt
Bruce Maggs

Geoff Langdale

L13_Deadlock

2

Synchronization – P2

● You should really have
− Figured out where wrappers belong, why
− Made some system calls
− Designed mutexes & condition variables
− Drawn pictures of thread stacks (even if not perfect)

3

Synchronization – P2

● Debugging reminder
− We can't really help with queries like:

● We did x...
● ...something strange happened...
● ...can you tell us why?

− You need to progress beyond “something happened”
● What was it that happened, exactly?
● printf() is not always the right tool

− produces correct output only if run-time environment is right
− captures only what you told it to, only “C-level” stuff
− changes your code by its mere presence!!!

● We're serious about examining register dumps!
● Overall, maybe re-read “Debugging” lecture notes

4

Synchronization - P2

● Reminder - P2 Q&A day
● Can be Friday – if you bring enough hard questions
● Otherwise Monday

5

Synchronization – Readings

● Next three lectures
− Deadlock: 6.5.3, 6.6.3, Chapter 7

● Reading ahead
− Scheduling: Chapter 5
− Virtual Memory: Chapter 8, Chapter 9

6

Outline

● Process resource graph
● What is deadlock?
● Deadlock prevention
● Next time

− Deadlock avoidance
− Deadlock recovery

7

Tape Drives

● A word on “tape drives”
− Ancient computer resources
− Access is sequential, read/write
− Any tape can be mounted on any drive
− One tape at a time is mounted on a drive

● Doesn't make sense for multiple processes to
simultaneously access a drive

● Reading/writing a tape takes a while
● Think “CD burner”...

8

Process/Resource graph

Tape 1

P1

Tape 2

P2

Tape 3

P3

Request

9

Process/Resource graph

Tape 1

P1

Tape 2

P2

Tape 3

P3

Allocation

10

Waiting

Tape 1

P1

Tape 2

P2

Tape 3

P3

11

Release

Tape 1

P1

Tape 2

P2

Tape 3

P3

12

Reallocation

Tape 1

P1

Tape 2

P2

Tape 3

P3

13

Multi-instance Resources

P1 P2 P3

Tapes Disks

14

Definition of Deadlock

● A deadlock
− Set of N processes
− Each waiting for an event

● ...which can be caused only by another process in the set
● Every process will wait forever

15

Deadlock Examples

● Simplest form
− Process 1 owns printer, wants tape drive
− Process 2 owns tape drive, wants printer

● Less-obvious
− Three tape drives
− Three processes

● Each has one tape drive
● Each wants “just” one more

− Can't blame anybody, but problem is still there

16

Deadlock Requirements

● Mutual Exclusion
● Hold & Wait
● No Preemption
● Circular Wait

17

Mutual Exclusion

● Resources aren't “thread-safe” (“reentrant”)
● Must be allocated to one process/thread at a time
● Can't be shared

− Programmable Interrupt Timer
● Can't have a different reload value for each process

18

Hold & Wait

● Process holds some resources while waiting for more
mutex_lock(&m1);
mutex_lock(&m2);
mutex_lock(&m3);

● This locking behavior is typical

19

No Preemption

● Can't force a process to give up a resource
● Interrupting a CD-R burn creates a “coaster”

− So don't do that
● Obvious solution

− CD-R device driver forbids second simultaneous open()
− If you can't open it, you can't pre-empt it...

20

Circular Wait

● Process 0 needs something process 4 has
− Process 4 needs something process 7 has
− Process 7 needs something process 1 has
− Process 1 needs something process 0 has – uh-oh...

● Described as “cycle in the resource graph”

21

Cycle in Resource Graph

Tape 2

P1

Tape 1

P2

Tape 3

P3

22

Deadlock Requirements

● Mutual Exclusion
● Hold & Wait
● No Preemption
● Circular Wait
● Each deadlock requires all four

23

Multi-Instance Cycle

P3P2P1

Tapes Disks

24

Multi-Instance Cycle (With Rescuer!)

P3P2P1

Tapes Disks

25

Cycle Broken

P3P2P1

Tapes Disks

26

Dining Philosophers

● The scene
− 410 staff at a Chinese restaurant
− A little short on utensils

27

Dining Philosophers

BPOR

MJ

JWCB

28

Dining Philosophers

● Processes
− 5, one per person

● Resources
− 5 bowls (dedicated to a diner: no contention: ignore)

● 5 chopsticks
− 1 between every adjacent pair of diners

● Contrived example?
− Illustrates contention, starvation, deadlock

29

Dining Philosophers

● A simple rule for eating
− Wait until the chopstick to your right is free; take it
− Wait until the chopstick to your left is free; take it
− Eat for a while
− Put chopsticks back down

30

Dining Philosophers Deadlock

● Everybody reaches right...
− ...at the same time?

31

Reaching Right

BPOR

MJ

JWCB

32

Process graph

BPOR

MJ

JWCB

33

Deadlock!

BPOR

MJ

JWCB

34

Dining Philosophers – State
int stick[5] = { -1 }; /* owner */
condition avail[5]; /* newly avail. */
mutex table = { available };

/* Right-handed convention */
right = diner; /* 3 ⇒ 3 */
left = (diner + 4) % 5; /* 3 ⇒ 7 ⇒ 2 */

35

start_eating(int diner)
mutex_lock(table);

while (stick[right] != -1)
 condition_wait(avail[right], table);
stick[right] = diner;

while (stick[left] != -1)
 condition_wait(avail[left], table);
stick[left] = diner;

mutex_unlock(table);

36

done_eating(int diner)

mutex_lock(table);

stick[left] = stick[right] = -1;
condition_signal(avail[right]);
condition_signal(avail[left]);

mutex_unlock(table);

37

Can We Deadlock?

● At first glance the table mutex protects us
− Can't have “everybody reaching right at same time”...
− ...mutex means only one person can access table...
− ...so allows only one reach at the same time, right?

38

Can We Deadlock?

● At first glance the table mutex protects us
− Can't have “everybody reaching right at same time”...
− ...mutex means only one person can access table...
− ...so allows only one reach at the same time, right?

● Maybe we can!
− condition_wait() is a “reach”
− Can everybody end up in condition_wait()?

39

First diner gets both chopsticks

40

Next gets right, waits on left

41

Next two get right, wait on left

42

Last waits on right

43

First diner stops eating - briefly

44

First diner stops eating - briefly

 signal()

45

Next Step – One Possibility

“Natural” –
longest-waiting diner progresses

⇒

46

Next Step – Another Possibility

Or –
somebody else!

⇒

47

Last diner gets right, waits on left

48

First diner gets right, waits on left

49

Now things get boring

50

Deadlock - What to do?

● Prevention
● Avoidance
● Detection/Recovery
● Just reboot when it gets “too quiet”

51

1: Prevention

● Restrict behavior or resources
− Find a way to violate one of the 4 conditions

● To wit...?
● What we will talk about today

− 4 conditions, 4 possible ways

52

2: Avoidance

● Processes pre-declare usage patterns
● Dynamically examine requests

− Imagine what other processes could ask for
− Keep system in “safe state”

53

3: Detection/Recovery

● Maybe deadlock won't happen today...
● ...Hmm, it seems quiet...
● ...Oops, here is a cycle...
● Abort some process

− Ouch!

54

4: Reboot When It Gets “Too Quiet”

● Which systems would be so simplistic?

55

Four Ways to Forgiveness

● Each deadlock requires all four
− Mutual Exclusion
− Hold & Wait
− No Preemption
− Circular Wait

● “Deadlock Prevention” - this is a technical term
− Pass a law against one (pick one)
− Deadlock happens only if somebody transgresses!

56

Outlaw Mutual Exclusion?

● Approach: ban single-user resources
− Require all resources to “work in shared mode”

● Problem
− Chopsticks???
− Many resources don't work that way

57

Outlaw Hold&Wait?

● Acquire resources all-or-none
start_eating(int diner)

mutex_lock(table);
while (1)
 if (stick[lt] == stick[rt] == -1)
 stick[lt] = stick[rt] = diner
 mutex_unlock(table)
 return;
 condition_wait(released, table);

58

Problems

● “Starvation”
− Larger resource set makes grabbing everything harder

● No guarantee a diner eats in bounded time
● Low utilization

− Larger peak resource needs hurts whole system always
● Must allocate 2 chopsticks (and waiter!)
● Nobody else can use waiter while you eat

59

Outlaw Non-preemption?

● Steal resources from sleeping processes!
start_eating(int diner)
right = diner; rright =
(diner+1)%5;

mutex_lock(table);
while (1)
 if (stick[right] == -1)
 stick[right] = diner
 else if (stick[rright] != rright)
 /* right person can't be eating:
take! */

 stick[right] = diner;
...same for left...wait() if must...
mutex_unlock(table);

60

Problem

● Some resources cannot be cleanly preempted
− CD burner

61

Outlaw Circular Wait?

● Impose total order on all resources
● Require acquisition in strictly increasing order

− Static order may work: allocate memory, then files
− Dynamic – may need to “start over” sometimes

● Traversing a graph
− lock(4), visit(4) /* 4 has an edge to 13 */
− lock(13), visit(13) /* 13 has an edge to 0 */
− lock(0)?

● Nope!
● unlock(4), unlock(13)
● lock(0), lock(4), lock(13), ...

62

Assigning Diners a Total Order

● Lock order: 4, 3, 2, 1, 0 ≡ right chopstick, then left
− Diner 4 ⇒ lock(4); lock(3);
− Diner 3 ⇒ lock(3); lock(2);

63

Assigning Diners a Total Order

● Lock order: 4, 3, 2, 1, 0 ≡ right chopstick, then left
− Diner 4 ⇒ lock(4); lock(3);
− Diner 3 ⇒ lock(3); lock(2);
− Diner 0 ⇒ lock(0); lock(4); /* invalid lock order! */

● Requires special-case locking code to get order right
if diner == 0
 right = (diner + 4) % 5;
 left = diner;
else
 right = diner;
 left = (diner + 4) % 5;
...

64

Problem

● May not be possible to force allocation order
− Some trains go east, some go west

65

Deadlock Prevention problems

● Typical resources require mutual exclusion
● All-at-once allocation can be painful

− Hurts efficiency
− May starve
− Resource needs may be unpredictable

● Preemption may be impossible
− Or may lead to starvation

● Ordering restrictions may be impractical

66

Deadlock Prevention

● Pass a law against one of the four ingredients
− Great if you can find a tolerable approach

● Very tempting to just let processes try their luck

67

Deadlock is not...

● ...a simple synchronization bug
− Deadlock remains even when those are cleaned up
− Deadlock is a resource usage design problem

● ...the same as starvation
− Deadlocked processes don't ever get resources
− Starved processes don't ever get resources
− Deadlock is a “progress” problem; starvation is a

“bounded waiting” problem
●that “after-you, sir” dance in the corridor

− That's “livelock” – continuous changes of state without
forward progress

68

Next Time

− Deadlock Avoidance
− Deadlock Recovery

