
1

Deadlock (2)

Roger Dannenberg
Dave Eckhardt

2

Synchronization

● Project 2 progress
− Don't split the coding in a bad way

● One popular bad way: Person A codes list/queue, syscall
stubs

● Person B codes everything else
● Person A will probably be in big trouble on the exam

3

Synchronization

● Project 2 progress
− Should have created a thread
− Should have passed startle
− Should be close to passing some mutex/cvar tests

4

Outline

● Review
− Prevention/Avoidance/Detection

● Today
− Avoidance
− Detection/Recovery

_

5

Deadlock - What to do?

● Prevention
− Pass a law against one of four ingredients
− Note: static, absolute ban.

● Avoidance
− Processes pre-declare usage patterns
− Note: stronger assumptions than for Prevention
− Request manager avoids “unsafe states”

● Detection/Recovery
− Clean up only when trouble really happens

_

6

Deadlock Avoidance – Motivation

● Deadlock prevention passes laws
− Unenforceable: shared CD-writers???
− Annoying

● Mandatory lock-acquisition order may induce starvation
− Locked 23, 24, 25, ... 88, 89, now must lock 0...

● Lots of starvation opportunities

● Do we really need such strict laws?
− Couldn't we be more “situational”?

7

Deadlock Avoidance Assumptions

1. Processes pre-declare usage patterns
− Could enumerate all paths through allocation space

● Request R1, Request R2, Release R1, Request R3, ...
- or -

● Request R1, Request R3, Release R3, Request R1, ...
− Easier: declare maximal resource usage

● I will never need more than 7 tape drives and 1 printer

8

Deadlock Avoidance Assumptions

2. Processes proceed to completion
− Don't hold onto resources forever

● Obvious how this helps!
− Complete in “reasonable” time

● So it is ok, if necessary, to stall P2 until P1 completes
● We will try to avoid this

9

Safe Execution Sequence

● (P1, P2, P3, ... Pn) is a safe sequence if
− Every process Pi can be satisfied using

● currently-free resources F plus
● resources currently held by P1, P2, ...Pi

● Pi's waiting is bounded by this sequence
− P1 will run to completion, release resources
− P2 can complete with F + P1's + P2's
− P3 can complete with F + P1's + P2's + P3's
− Pi won't wait forever, so no wait cycle, no deadlock □

10

Safe State

● System in a safe state iff...
− there exists at least one safe sequence

● Worst-case situation
− Every process asks for every resource at once
− Follow the safe sequence (run processes serially)

● Slow, but not as slow as a deadlock!

● Serial execution is worst-case, not typical
− Usually execute in parallel

11

Request Manager - Naïve

● Grant request if
− Enough resources are free now

● Otherwise, tell requesting process to wait
− While holding resources

● Which are non-preemptible, ...

● Easily leads to deadlock

12

Request Manager – Avoidance

● Grant request if
− Enough resources are free now, and
− Enough resources would still be free

● For some process to complete and release resources
● And then another one
● And then you

● Otherwise, wait
− While holding a smaller set of resources...

● ...which we previously proved other processes can
complete

13

Example (from text)

-312System

729P2

224P1

5510P0

RoomHasMaxWho

“Is it safe?”

“Yes it’s safe; it’s very safe, so safe you wouldn’t believe it.”

Max=declared

Has=allocated

Room=Max−Has

(from “Marathon Man”)

14

P1: 2 ⇒ 4

-312System

729P2

224P1

5510P0

RoomHasMaxWho

-112System

729P2

044P1

5510P0

RoomHasMaxWho

15

P1: Complete

-112System

729P2

044P1

5510P0

RoomHasMaxWho

-512System

729P2

5510P0

RoomHasMaxWho

16

P0: 5 ⇒ 10

-512System

729P2

5510P0

RoomHasMaxWho

-012System

729P2

01010P0

RoomHasMaxWho

17

P0: Complete

-012System

729P2

01010P0

RoomHasMaxWho

-1012System

729P2

RoomHasMaxWho

“Run P1, P0, P2” is a safe sequence.

So the system was in a safe state.

18

Example (from text)

-312System

729P2

224P1

5510P0

RoomHasMaxWho

“Can P2 ask for more?”

“Is it safe?”

“No, it’s not safe; it’s very dangerous, be careful.

19

P2: 2 ⇒ 3?

-312System

729P2

224P1

5510P0

RoomHasMaxWho

-212System

639P2

224P1

5510P0

RoomHasMaxWho

Now, only P1 can be satisfied without waiting.

20

P1: 2 ⇒ 4?

-212System

639P2

224P1

5510P0

RoomHasMaxWho

-012System

639P2

044P1

5510P0

RoomHasMaxWho

21

P1: Complete

-012System

639P2

044P1

5510P0

RoomHasMaxWho

-412System

639P2

5510P0

RoomHasMaxWho

22

P1: Complete

-412System

639P2

5510P0

RoomHasMaxWho

Problem: P0 and P2 are allowed to ask for >4.

If both do, both sleep: deadlock.

23

Avoidance - Key Ideas

● Safe state
− Some safe sequence exists
− Prove it by finding one

● Unsafe state: No safe sequence exists
● Unsafe may not be fatal

− Processes might exit early
− Processes might not use max resources today

24

Safe , Unsafe , Deadlock

25

Avoidance – Tradeoff

● Allowing only safe states is more flexible than
Prevention

● But rejecting all unsafe states reduces efficiency
− System could enter unsafe state and then return to

safety...
− How often would the system “retreat from disaster”?

● Hmm...

26

Avoidance - Unique Resources

● Unique resources instead of multi-instance?
− Graph algorithm

● Three edge types
− Claim (future request)
− Request
− Assign

_

27

“Claim” (Future-Request) Edges

Tape 2

P1

Tape 1

P2

Tape 3

P3

28

Claim ⇒Request

Tape 2

P1

Tape 1

P2

Tape 3

P3

29

Request ⇒Assignment

Tape 2

P1

Tape 1

P2

Tape 3

P3

30

Safe: No Cycle

Tape 2

P1

Tape 1

P2

Tape 3

P3

31

Which Requests Are Safe?

● Pretend to satisfy request
● Look for cycles in resultant graph

_

32

A Dangerous Request

Tape 2

P1

Tape 1

P2

Tape 3

P3

33

See Any Cycles?

Tape 2

P1

Tape 1

P2

Tape 3

P3

34

Are “Pretend” Cycles Fatal?

● Must we worry about all cycles?
− Nobody is waiting on a “pretend” cycle

● Lots of the edges are only potential request edges
− We don't have a deadlock

● “Is it safe?”

_

35

Are “Pretend” Cycles Fatal?

● No process can, without waiting
− Acquire maximum-declared resource set

● So no process can acquire, complete, release
− (for sure, without maybe waiting)

● Any new request could form a cycle
− “No, it's not safe, it's very dangerous, be careful.”

● What to do?
− Don't grant the request (put the process to sleep now,
before it gets that resource)

36

Avoidance - Multi-instance Resources

● Example
− N interchangeable tape drives
− Could represent by N tape-drive nodes
− Needless computational expense

● Business credit-line model
− Bank assigns maximum loan amount (“credit limit”)
− Business pays interest on current borrowing amount

_

37

Avoiding “bank failure”

● Bank is “ok” when there is a safe sequence
● One company can

− Borrow up to its credit limit
− Do well
− IPO
− Pay back its full loan amount

● And then another company, etc.

38

No safe sequence?

● Company tries to borrow up to limit
− Bank has no cash
− Company C1 must wait for money C2 has
− Maybe C2 must wait for money C1 has

● In real life
− C1 cannot make payroll
− C1 goes bankrupt
− Loan never paid back in full

● Can model as “infinite sleep”

39

Banker's Algorithm
int cash;
int limit[N]; /* credit limit */
int out[N] /* borrowed */;
boolean done[N]; /* global temp! */
int future; /* global temp! */

int progressor (int cash) {
 for (i = 0; i < N; ++i)
 if (!done[i])
 if (cash >= limit[i] - out[i])
 return (i);
 return(-1);
}

Cash on hand is enough
 so you can borrow
 entire credit line

40

Banker's Algorithm
boolean is_safe(void) {
 future = cash;
 done[0..N] = false;

 while ((p = progressor(future)) > 0) {
 future += out[p];
 done[p] = true;
 }
 return (done[0..N] == true)
}

41

Banker's Algorithm
boolean is_safe(void) {
 future = cash;
 done[0..N] = false;

 while ((p = progressor(future)) > 0) {
 future += out[p];
 done[p] = true;
 }
 return (done[0..N] == true)
} What if progressor

chooses processes
in the wrong order?

42

Banker's Algorithm

● Can we loan more money to a company?
− Pretend we did

● update cash and out[i]
− Is it safe?

● Yes: lend more money
● No: un-do to pre-pretending state, sleep

● Multi-resource Version
− Generalizes easily to N independent resource types
− See text

43

Avoidance - Summary

● Good news - No deadlock
+ No static “laws” about resource requests
+ Allocations flexible according to system state

● Bad news
− Processes must pre-declare maximum usage
− Avoidance is conservative

● Many “unsafe” states are almost safe
● System throughput reduced – extra sleeping
● 3 processes, can allocate only 2 tape drives!?!?

44

Deadlock - What to do?

● Prevention
− Pass a law against one of four ingredients

● Avoidance
− Processes pre-declare usage patterns
− Request manager avoids “unsafe states”

● Detection/Recovery
− Clean up only when trouble really happens

_

45

Detection & Recovery - Approach

● Don't be paranoid
− Don't refuse requests that might lead to trouble

● (someday)
● Most things work out ok in the end

● Even paranoids have enemies
− Sometimes a deadlock will happen
− Need a plan for noticing
− Need a policy for reacting
− Somebody must be told “try again later”

_

46

Detection - Key Ideas

● “Occasionally” scan for wait cycles
● Expensive

− Must lock out all request/allocate/deallocate activity
− Global mutex is the “global variable” of concurrency
− Detecting cycles is an N-squared kind of thing

47

Scanning Policy

● Throughput balance
− Scan too often - system becomes (very) slow
− Scan before every sleep? Only in small systems
− Scan too rarely - system becomes (extremely) slow

● Policy candidates
− Scan every <interval>
− Scan when CPU is “too idle”

48

Detection - Algorithms

● Detection: Unique Resources
− Search for cycles in resource graph

● (see above)

● Detection: Multi-instance Resources
− Slight variation on Banker's Algorithm

● (see text)

● Find a deadlock? Now what?
− Abort
− Preempt

49

Recovery - Abort

● Evict processes from the system
● All processes in the cycle?

− Simple & blame-free policy
− Lots of re-execution work later

● Just one process in the cycle?
− Which one?

● Priority? Work remaining? Work to clean up?
− Often immediately creates a smaller cycle – re-scan?

_

50

Recovery – Abort Just One?

P1

R1

P2

P3

R2

R3P3's plan
A(R3); A(R1); A(R2)

51

Recovery – Abort Just One?

P1

R1

P2

P3

R2

R3P3's plan
A(R3); A(R1); A(R2)

52

Recovery – Abort Just One?

R1

P2

P3

R2

R3P3's plan
A(R3); A(R1); A(R2)

53

Recovery – Can we do better?

● Aborting processes is undesirable
− Re-running processes is expensive
− Long-running tasks may never complete
− Starvation

_

54

Recovery - Resource Preemption

● Tell some process(es)
● lock(R346) ⇒“EDEADLOCK”
● Policy question: which process loses?
● Lowest-numbered? ⇒ starvation!
● What does “EDEADLOCK” mean?

− Can't just retry the request (make sure you see this)
− Must release other resources you hold, try later
− Forced release may require “rollback” (yuck)

55

Summary - Deadlock

● Deadlock is...
− Set of processes
− Each one waiting for something held by another

● Four “ingredients”
● Three approaches

− (aside from “Hmmm...<reboot>”)

_

56

Deadlock - Approaches

● Prevention - Pass a law against one of:
− Mutual exclusion (unlikely!)
− Hold & wait (maybe, but...)
− No preemption (maybe?)
− Circular wait (sometimes)

● An architectural choice may preclude some features,
algorithms, …

57

Deadlock - Approaches

● Avoidance - “Stay out of danger”
− Requires pre-declaration of usage patterns
− Not all “danger” turns into trouble

● Detection & Recovery
− Scan frequency: delicate balance
− Preemption is hard, messy

● Rebooting
− Was it really hung?

58

Summary - Starvation

● starvation ≠ deadlock:
− Starvation and Deadlock share the property that at least one

process is not making progress.
− With starvation there is a schedule where the process makes

progress (but the schedule is not taken).

● Starvation is a ubiquitous danger

● “Solutions” to deadlock leave us vulnerable to starvation.
− If you’re the class of application impacted, you are no better

off than if you were deadlocked.

