
15-410, F'081

Virtual Memory #1
Sep. 29, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L15_VM1

15-410
“...We are Computer Scientists!...”

15-410, F'084

Outline

TextText
� Chapters 8, 9

The Problem: logical vs. physicalThe Problem: logical vs. physical

Contiguous memory mappingContiguous memory mapping

FragmentationFragmentation

PagingPaging
� Type theory
� A sparse map

15-410, F'085

Logical vs. Physical

It's all about address spacesIt's all about address spaces
� Generally a complex issue

� IPv4 � IPv6 is mainly about address space exhaustion

ReviewReview
� Combining .o's changes addresses
� But what about two programs?

15-410, F'086

Every .o uses same address
space

code

data

bss

code

data

bss

15-410, F'087

Linker Combines .o's, Changes
Addresses

code

data

bss

code

data

bss

15-410, F'088

What About Two Programs?

code

data

bss

00010000

00010200

00010300

stack FFFFF000

code

data

bss

00010000

00010100

00010300

stack FFFFE000

15-410, F'089

Logical vs. Physical Addresses

Logical addressLogical address
� Each program has its own address space ...

� fetch: address � data
� store: address, data � .

� ...as envisioned by programmer, compiler, linker

Physical addressPhysical address
� Where your program ends up in memory
� They can't all be loaded at 0x10000!

15-410, F'0810

Reconciling Logical, Physical

Programs could Programs could take turnstake turns in memory in memory
� Requires swapping programs out to disk
� Very slow

Could run programs at addresses other than linkedCould run programs at addresses other than linked
� Requires using linker to “relocate one last time” a t launch
� Done by some old mainframe OSs
� Slow, complex, or both

We are computer scientists!We are computer scientists!

15-410, F'0811

Reconciling Logical, Physical

Programs could Programs could take turnstake turns in memory in memory
� Requires swapping programs out to disk
� Very slow

Could run programs at addresses other than linkedCould run programs at addresses other than linked
� Requires using linker to “relocate one last time” a t launch
� Done by some old mainframe OSs
� Slow, complex, or both

We are computer scientists!We are computer scientists!
� Insert a level of indirection

15-410, F'0812

Reconciling Logical, Physical

Programs could Programs could take turnstake turns in memory in memory
� Requires swapping programs out to disk
� Very slow

Could run programs at addresses other than linkedCould run programs at addresses other than linked
� Requires using linker to “relocate one last time” a t launch
� Done by some old mainframe OSs
� Slow, complex, or both

We are computer scientists!We are computer scientists!
� Insert a level of indirection
� Well, get the ECE folks to do it for us

15-410, F'0813

Type Theory
Physical memory behaviorPhysical memory behavior

� fetch: address � data
� store: address, data � .

Process thinks of memory as...Process thinks of memory as...
� fetch: address � data
� store: address, data � .

Goal: each process has “its own memory”Goal: each process has “its own memory”
� process-id � fetch: (address � data)
� process-id � store: (address, data � .)

What What reallyreally happens happens
� process-id � map: (virtual-address � physical-address)
� Use “map o fetch” and “map o store”

15-410, F'0814

Simple Mapping Functions
P1P1

If V > 8191 ERROR

Else P = 1000 + V

P2P2
If V > 16383 ERROR

Else P = 9192 + V

Address space Address space ��
� Base address
� Limit

Process 3

Process 2

Process 1

OS Kernel

0

16383

9192

25575

0
8191

1000
9191

0
999

0
999

Virtual Physical

15-410, F'0815

Contiguous Memory Mapping
Processor contains two Processor contains two control registerscontrol registers

� Memory base
� Memory limit

Each memory access checksEach memory access checks
If V < limit

 P = base + V;

Else

 ERROR /* what do we call this error? */

During context switch...During context switch...
� Save/load user-visible registers
� Also load process's base, limit registers

15-410, F'0816

Problems with Contiguous Allocation
How do we How do we growgrow a process? a process?

� Must increase “limit” value
� Cannot expand into another process's memory!
� Must move entire address spaces around

� Very expensive

FragmentationFragmentation
� New processes may not fit into unused memory “holes ”

Partial memory residencePartial memory residence
� Must entire program be in memory at same time?

15-410, F'0817

Can We Run Process 4?

Process exit creates Process exit creates
“holes”“holes”

New processes may be New processes may be
too largetoo large

May require moving entire May require moving entire
address spacesaddress spaces

Process 3

Process 4

OS Kernel

Process 1

15-410, F'0818

Term: “External Fragmentation”

Free memory is small Free memory is small
chunkschunks

Doesn't fit large objectsDoesn't fit large objects

Can “disable” lots of Can “disable” lots of
memorymemory

Can fixCan fix
� Costly “compaction”

� aka “Stop & copy”

Process 4

Process 1

OS Kernel

Process 2

15-410, F'0819

Term: “Internal Fragmentation”

Allocators often round upAllocators often round up
� 8K boundary (some

power of 2!)

Some memory is wasted Some memory is wasted
insideinside each segment each segment

Can't fix via compactionCan't fix via compaction

Effects often non-fatalEffects often non-fatal

Process 3

Process 4

Process 1

OS Kernel

0

8192

1100

9292

15-410, F'0820

Swapping

Multiple user processesMultiple user processes
� Sum of memory demands > system memory
� Goal: Allow each process 100% of system memory

Take turnsTake turns
� Temporarily evict process(es) to disk

� Not runnable
� Blocked on implicit I/O request (e.g., “swapread”)

� “Swap daemon” shuffles process in & out
� Can take seconds per process

� Modern analogue: laptop suspend-to-disk
� Maybe we need a better plan?

15-410, F'0821

Contiguous Allocation � Paging

Solves multiple problemsSolves multiple problems
� Process growth problem
� Fragmentation compaction problem
� Long delay to swap a whole process

Approach: divide memory more finelyApproach: divide memory more finely
� Page = small region of virtual memory (½K, 4K, 8K, ...)
� Frame = small region of physical memory
� [I will get this wrong, feel free to correct me]

Key idea!!!Key idea!!!
� Any page can map to (occupy) any frame

15-410, F'0822

Per-process Page Mapping

P0 code 0

OS Kernel

P1 code 0
P0 data 0
P1 data 0
P1 stack 0
P0 stack 0
P1 data 1
P0 code 1

P0 code 0
P0 code 1
P0 data 0

P0 stack 0

P1 code 0
P1 data 0
P1 data 1

P1 stack 0

15-410, F'0823

Problems Solved by Paging

Process growth problem?Process growth problem?
� Any process can use any free frame for any purpose

Fragmentation compaction problem?Fragmentation compaction problem?
� Process doesn't need to be contiguous, so don't com pact

Long delay to swap a whole process?Long delay to swap a whole process?
� Swap part of the process instead!

15-410, F'0824

Partial Residence

P0 code 0

OS Kernel

[free]
P0 data 0
P1 data 0
P1 stack 0
P0 stack 0
P1 data 1

[free]

P0 code 0
P0 code 1
P0 data 0
P0 stack 0

P1 code 0
P1 data 0
P1 data 1
P1 stack 0

15-410, F'0825

Data Structure Evolution
Contiguous allocationContiguous allocation

� Each process was described by (base,limit)

PagingPaging
� Each page described by (base,limit)?

� Pages typically one size for whole system
� Ok, each page described by (base address)
� Arbitrary page � frame mapping requires some work

� Abstract data structure: “map”
� Implemented as...

15-410, F'0826

Data Structure Evolution

Contiguous allocationContiguous allocation
� Each process was described by (base,limit)

PagingPaging
� Each page described by (base,limit)?

� Pages typically one size for whole system
� Ok, each page described by (base address)
� Arbitrary page � frame mapping requires some work

� Abstract data structure: “map”
� Implemented as...

» Linked list?
» Array?
» Hash table?
» Skip list?
» Splay tree?????

15-410, F'0827

Page Table Options
Linked listLinked list

� O(n), so V� P time gets longer for large addresses!

ArrayArray
� Constant time access
� Requires (large) contiguous memory for table

Hash tableHash table
� Vaguely-constant-time access
� Not really bounded though

Splay treeSplay tree
� Excellent amortized expected time
� Lots of memory reads & writes possible for one mapping
� Probably impractical

15-410, F'0828

Page Table Array

Page

....
f29
f34
....

Frame

Page table array

Page 3
Page 2
Page 1
Page 0

15-410, F'0829

Paging – Address Mapping

Logical Address

Page Offset

 4K page size � 12 bits

 32 - 12 � 20 bits of page #

15-410, F'0830

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame

Page table

15-410, F'0831

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame Offset

Copy

Page table

15-410, F'0832

Paging – Address Mapping

Logical Address

Page Offset

....
f29
f34
....

Frame Offset

Page table
Physical Address

15-410, F'0833

Paging – Address Mapping

User viewUser view
� Memory is a linear array

OS viewOS view
� Each process requires N frames

Fragmentation?Fragmentation?
� Zero external fragmentation
� Internal fragmentation: average ½ page per region

15-410, F'0834

Bookkeeping

One page table for each processOne page table for each process

One global frame tableOne global frame table
� Manages free frames
� (Typically) remembers who owns each frame

Context switchContext switch
� Must “activate” switched-to process's page table

15-410, F'0835

Hardware Techniques

Small number of pages?Small number of pages?
� “Page table” can be a few registers
� PDP-11, 64k address space

� 8 “pages” of 8k each – 8 registers

Typical caseTypical case
� Large page tables, live in memory

� Where?
» Processor has “Page Table Base Register” (names

vary)
» Set during context switch

15-410, F'0836

Double trouble?

Program requests memory accessProgram requests memory access
� MOVL (%ESI),%EAX

Processor makes Processor makes twotwo memory accesses! memory accesses!
� Splits address into page number, intra-page offset
� Adds page number to page table base register
� Fetches page table entry (PTE) from memory
� Concatenates frame address with intra-page offset
� Fetches program's data from memory into %eax

Solution: “TLB”Solution: “TLB”
� Not covered today

15-410, F'0837

Page Table Entry Mechanics

PTE conceptual jobPTE conceptual job
� Specify a frame number

15-410, F'0838

Page Table Entry Mechanics

PTE conceptual jobPTE conceptual job
� Specify a frame number

PTE flagsPTE flags
� Valid bit

� Not-set means access should generate an exception
� Protection

� Read/Write/Execute bits
� Dirty bit

� Set means page was written to “recently”
� Used when paging to disk (later lecture)

� Specified by OS for each page/frame

15-410, F'0839

Page Table Structure

ProblemProblem
� Assume 4 KByte pages, 4-Byte PTEs
� Ratio: 1024:1

� 4 GByte virtual address (32 bits) � 4 MByte page table
� For each process!

15-410, F'0840

Page Table Structure

ProblemProblem
� Assume 4 KByte pages, 4-Byte PTEs
� Ratio: 1024:1

� 4 GByte virtual address (32 bits) � 4 MByte page table
� For each process!

One Approach: Page Table Length Register (PTLR)One Approach: Page Table Length Register (PTLR)
� (names vary)
� Programs don't use entire virtual space
� Restrict a process to use entries 0...N
� On-chip register detects out-of-bounds reference
� Allows small PTs for small processes

� (as long as stack isn't far from data)

15-410, F'0841

Page Table Structure

Key observationKey observation
� Each process page table is a sparse mapping
� Many pages are not backed by frames

� Address space is sparsely used
» Enormous “hole” between bottom of stack, top of hea p
» Often occupies 99% of address space!

� Some pages are on disk instead of in memory

15-410, F'0842

Page Table Structure

Key observationKey observation
� Each process page table is a sparse mapping
� Many pages are not backed by frames

� Address space is sparsely used
» Enormous “hole” between bottom of stack, top of hea p
» Often occupies 99% of address space!

� Some pages are on disk instead of in memory

Refining our observationRefining our observation
� Page tables are not randomly sparse

� Occupied by sequential memory regions
� Text, rodata, data+bss, stack

� “Sparse list of dense lists”

15-410, F'0843

Page Table Structure

How to map “sparse list of dense lists”?How to map “sparse list of dense lists”?

We are computer scientists!We are computer scientists!
� ...?

15-410, F'0844

Page Table Structure

How to map “sparse list of dense lists”?How to map “sparse list of dense lists”?

We are computer scientists!We are computer scientists!
� Insert a level of indirection
� Well, get the ECE folks to do it for us

Multi-level page tableMulti-level page table
� Page directory maps large chunks of address space t o...
� ...Page tables, which map pages to frames

15-410, F'0845

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

 f07
....

Page
Directory

15-410, F'0846

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

 f07
....

Page
Directory

15-410, F'0847

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

15-410, F'0848

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2
f08

�f07�
....

Page
Directory

15-410, F'0849

Multi-level page table

P1 Offset

....
f29
f34
f25

Page
Tables

....
f99
f87
....

P2

15-410, F'0850

Multi-level page table

P1 Offset

....
f29
f34
f25

f34

Page
Tables

....
f99
f87
....

P2

15-410, F'0851

Multi-level page table

P1 Offset

....
f29
f34
f25

f34 Offset

Page
Tables

....
f99
f87
....

P2

15-410, F'0852

Sparse Mapping?
Assume 4 KByte pages, 4-byte PTEsAssume 4 KByte pages, 4-byte PTEs

� Ratio: 1024:1
� 4 GByte virtual address (32 bits) � 4 MByte page table

Now assume page Now assume page directorydirectory with 4-byte P with 4-byte P DDEsEs
� 4-megabyte page table becomes 1024 4K page tables
� Plus one 1024-entry page directory to point to them
� Result: 4 Mbyte + 4Kbyte (this is better??)

15-410, F'0853

Sparse Mapping?
Assume 4 KByte pages, 4-byte PTEsAssume 4 KByte pages, 4-byte PTEs

� Ratio: 1024:1
� 4 GByte virtual address (32 bits) � 4 MByte page table

Now assume page Now assume page directorydirectory with 4-byte P with 4-byte P DDEsEs
� 4-megabyte page table becomes 1024 4K page tables
� Plus one 1024-entry page directory to point to them
� Result: 4 Mbyte + 4Kbyte (this is better??)

SparseSparse address space... address space...
� ...means most page tables contribute nothing to map ping...
� ...would all be full of “empty” entries...
� ...so just use a “null pointer” in page directory i nstead.
� Result: empty 4GB address space specified by 4KB directory

15-410, F'0854

Sparse Mapping?
Sparsely populated page directorySparsely populated page directory

� Contains pointers only to non-empty page tables

Common caseCommon case
� Need 2 or 3 page tables

� One or two map code, data
� One maps stack

� Page directory has 1024 slots
� Two are filled in with valid pointers
� Remainder are “not present”

ResultResult
� 2-3 page tables
� 1 page directory
� Map entire address space with 12-16Kbyte, not 4Mbyt e

-no-
-no-
f34
f25

f99
-no-
-no-
-no-

PT 1
-no-
-no-
PT 0

stack
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
-no-
data
code

15-410, F'0855

Segmentation

Physical memory is (mostly) linearPhysical memory is (mostly) linear

Is virtual memory linear?Is virtual memory linear?
� Typically a set of “regions”

� “Module” = code region + data region
� Region per stack
� Heap region

Why do regions matter?Why do regions matter?
� Natural protection boundary
� Natural sharing boundary

15-410, F'0856

Segmentation: Mapping

Seg # Offset

<=

Linear Address
Limit Base

+

15-410, F'0857

Segmentation + Paging

80386 (does it 80386 (does it allall !)!)
� Processor address directed to one of six segments

� CS: Code Segment, DS: Data Segment
� 32-bit offset within a segment -- CS:EIP

� Descriptor table maps selector to segment descripto r
� Offset fed to segment descriptor, generates linear address
� Linear address fed through page directory, page tab le

15-410, F'0858

x86 Type Theory

Instruction Instruction �� segment selector segment selector
� [PUSHL implicitly specifies selector in %SS]

Process Process �� (selector (selector �� (base,limit)) (base,limit))
� [Global,Local Descriptor Tables]

Segment, in-segment address Segment, in-segment address �� linear address linear address
� CS:EIP means “EIP + base of code segment”

Process Process �� (linear address high (linear address high �� page table) page table)
� [Page Directory Base Register, page directory index ing]

Page Table: linear address middle Page Table: linear address middle �� frame address frame address

Memory: frame address + offset Memory: frame address + offset ��

15-410, F'0859

Summary

Processes emit virtual addressesProcesses emit virtual addresses
� segment-based or linear

A magic process maps virtual to physicalA magic process maps virtual to physical

No, it's No, it's notnot magic magic
� Address validity verified
� Permissions checked
� Mapping may fail (trap handler)

Data structures determined by access patternsData structures determined by access patterns
� Most address spaces are sparsely allocated

15-410, F'0860

Quote

Any problem in Computer Science can be solved by an
extra level of indirection.

–Roger Needham

