
1

15-410 Mid-Semester Review

Dave Eckhardt
Roger Dannenberg



2

Synchronization

� Don't forget Homework 1 deadline!
� Not midnight!!
� We'll be releasing solutions immediately

� Exam: Tuesday, 19:00, Wean 7500



3

Synchronization

� VM is not on the exam
� It could be, but it'll be more fun on the final

� Threading vs. this exam
� You are responsible for conceptual material 

covered in class.
� Your thread library may not be perfect...
� ...but we expect you to solidly understand what 

the thread-library primitives do and how to 
correctly use them.



6

Synchronization

� Exam will be closed-book
� Who is reading comp.risks?
� About today's review

� Mentioning key concepts
� No promise of exhaustive coverage
� Reading some of the textbook is advisable!

� Will attempt a 3 4-slide summary at end



7

OS Overview

� Abstraction/obstruction layer
� Virtualization
� Protected sharing/controlled interference



8

Hardware

� Inside the box – bridges
� User registers and other registers
� Fairy tales about system calls
� Kinds of memory, system-wide picture

� User vs. kernel
� Code, data, stack
� Per-process kernel stack

� Device driver, interrupt vector, masking 
interrupts



9

Hardware

� System clock
� “Time of day” clock (aka “calendar”)
� Countdown timer



13

Process

� Pseudo-machine (registers, memory, I/O)
� Life cycle: fork()/exec()

� specifying memory, registers, I/O, kernel state
� the non-magic of stack setup (argv[])
� the non-magic function that calls main()

� States: running, runnable, sleeping, zombie
� Process cleanup: why, what



14

Thread

� Core concept: schedulable set of registers
� With access to some resources

� Address space, system-level objects
� (Mach terminology: “task”)

� Thread stack
� Why threads?

� Cheap context switch
� Cheap access to shared resources
� Responsiveness
� Multiprocessors



15

Thread types

� Internal (N:1)
� optional user-space library
� register save/restore (incl. stack swap)

� Features
� only one outstanding system call (without tricks)
� “cooperative” scheduling might not be
� no win on multiprocessors



16

Thread types

� Kernel threads (1:1)
� resources (memory, ...) shared & reference-

counted
� kernel manages: registers, k-stack, scheduling

� Features
� good on multiprocessors
� may be “heavyweight”



17

Thread types

� M:N
� M user threads share N kernel threads

� dedicated or shared

� Features
� Best of both worlds
� Or maybe worst of both worlds



18

Thread cancellation

� Asynchronous/immediate
� Don't try this at home
� How to garbage collect???

� Deferred
� Requires checking or cancellation points



20

Race conditions

� Lots of “++x vs. --x” examples using table 
format

� “Race-condition party” algorithms
� e.g., Bakery

� The setuid shell script attack
� (as an example in a different arena)

� This is a core concept 
� (not limited to one part of the course, or to the 

course as a whole)



21

Wacky Memory, “Modern” Machines

� Memory writes may be re-ordered or 
coalesced

� That's not a bug, it's a feature!
� You may generally assume old-fashioned 

memory for this class



22

Atomic sequences

� short
� require non-interference
� typically nobody is interfering
� store->cash += 50;
� encapsulate in “mutex” / “latch”



23

Voluntary de-scheduling

� “Are we there yet?”
� We want somebody else to have our CPU
� Not-running is an OS service!
� Atomic:

� release state-guarding mutex
� go to sleep

� encapsulate in “condition variable”



24

Critical Section Problem / Protocol

� Three goals
� Mutual exclusion
� Progress – choosing time must be bounded
� Bounded waiting – choosing cannot be 

unboundedly unfair
� Synchronization lectures

� “Taking Turns When Necessary” algorithm
� Bakery algorithm



25

Mutex implementation

� Hardware flavors
� XCHG, Test&Set
� Load-linked, store-conditional
� i860 magic lock bit
� Basically isomorphic

� Lamport's algorithm (not on test!!!)
� “Passing the buck” to the OS (or why not!)
� [Oddities: Kernel-assisted instruction 

sequences]



26

Bounded waiting

� One algorithm discussed
� How critical in real life?

� Why or why not?



27

Environment matters

� Spin-wait on a uniprocessor????
� How reasonable is your scheduler?

� Maybe approximate bounded waiting is 
approximately free?



28

Condition variables

� Why we want them
� How to use them
� What's inside?
� The “atomic sleep” problem



29

Semaphores

� Concept
� Thread-safe integer
� wait()/P()
� signal()/V()

� Use
� Can be mutexes or condition variables

� 42 flavors
� Binary, non-blocking, counting/recursive



30

Monitor

� Concept
� Collection of procedures
� Block of shared state
� Compiler-provided synchronization code

� Condition variables (again)



31

Deadlock

� Definition
� Group of N processes
� Everybody waiting for somebody else in the 

group
� Four requirements
� Process/Resource graphs
� Dining Philosophers example



32

Prevention

� Four Ways To Forgiveness
� One is used particularly frequently



33

Avoidance

� Keep system in “safe” states
� States with an “exit strategy”

� Assume some process will complete, release 
resources

� Make sure this enables another to finish, etc.
� Banker's Algorithm



34

Detection

� Don't be paranoid (but don't be oblivious)
� Scan for cycles

� When?
� What to do when you find one?



35

Starvation

� Always a danger
� Understand vs. deadlock

� Solutions probably application-specific



36

Context switch

� yield() by hand (user-space threads)
� No magic!

� yield() in the kernel
� Built on the magic process_switch()
� Inside the non-magic process_switch()

� Scheduling
� Saving
� Restoring

� Clock interrupts, I/O completion



39

Addresses

� Where addresses come from
� Program counter
� Stack pointer
� Random registers

� Parts / areas / segments / regions of a 
process/program



49

Summary – What is an OS?

� Parts of a machine
� Memory, registers
� Interrupts/traps and their handlers

� Parts of a process (incl. thread)
� Memory, registers, stack
� System calls (stubs, handlers)

[Next slide: covered, but not coded, so not on test][Next slide: covered, but not coded, so not on test][Next slide: covered, but not coded, so not on test][Next slide: covered, but not coded, so not on test][Next slide: covered, but not coded, so not on test][Next slide: covered, but not coded, so not on test][Next slide: covered, but not coded, so not on test][Next slide: covered, but not coded, so not on test][Next slide: covered, but not coded, so not on test]



50

Summary – What is an OS?

� How to assemble machine parts into process 
parts
� How to make virtual memory from physical How to make virtual memory from physical How to make virtual memory from physical How to make virtual memory from physical How to make virtual memory from physical How to make virtual memory from physical How to make virtual memory from physical How to make virtual memory from physical How to make virtual memory from physical 

memorymemorymemorymemorymemorymemorymemorymemorymemory
� How to make a process from memory and How to make a process from memory and How to make a process from memory and How to make a process from memory and How to make a process from memory and How to make a process from memory and How to make a process from memory and How to make a process from memory and How to make a process from memory and 

registersregistersregistersregistersregistersregistersregistersregistersregisters
� And an executable fileAnd an executable fileAnd an executable fileAnd an executable fileAnd an executable fileAnd an executable fileAnd an executable fileAnd an executable fileAnd an executable file

� How to share a machine among processesshare a machine among processesshare a machine among processesshare a machine among processesshare a machine among processesshare a machine among processesshare a machine among processesshare a machine among processesshare a machine among processes
� (and how to share a process among threads)
� Context switchContext switchContext switchContext switchContext switchContext switchContext switchContext switchContext switch/yield



51

Summary – Synchronization

� Basic RAM-based algorithms
� Be able to read one and think about it

� Mutex, condition variable
� When to use each one, and why
� What's inside each one, and why



52

Summary – Deadlock

� A fundamental OS problem
� Affects every OS
� No “silver bullet”

� What you need for deadlock
� Prevention, Avoidance, Detection/Recovery

� What each is, how they relate
� Starvation



53

Preparation

� Homework 1
� Archive of old mid-terms
� Don't forget to get some sleep


