
15-410,F'081

Virtual Memory #3
Oct. 8, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L19_VM3

15-410
“...The cow and Zaphod...”

15-410,F'083

Outline

Last timeLast time
� The mysterious TLB
� Partial memory residence (demand paging) in action
� The task of the page fault handler

TodayToday
� Fun big speed hacks
� Sharing memory regions & files
� Page replacement policies

15-410,F'084

Demand Paging Performance

Effective access timeEffective access time of memory word of memory word

� (1 – p
miss

) * Tmemory + p
miss

 * Tdisk

Textbook example (a little dated)Textbook example (a little dated)
� Tmemory 100 ns

� Tdisk 25 ms

� p
miss

 = 1/1,000 slows down by factor of 250

� slowdown of 10% needs p
miss

 < 1/2,500,000!!!

15-410,F'085

Speed Hacks

COWCOW

ZFOD (Zaphod?)ZFOD (Zaphod?)

Memory-mapped filesMemory-mapped files
� What msync() is supposed to be used for...

15-410,F'086

Copy-on-Write

fork() produces two fork() produces two veryvery -similar processes-similar processes
� Same code, data, stack

Expensive to copy pagesExpensive to copy pages
� Many will never be modified by new process

� Especially in fork(), exec() case

ShareShare physical frames instead of copying? physical frames instead of copying?
� Easy: code pages – read-only
� Dangerous: stack pages!

15-410,F'087

Copy-on-Write

SimulatedSimulated copy copy
� Copy page table entries to new process
� Mark PTEs read-only in old & new
� Done! (saving factor: 1024)

� Simulation is excellent as long as process doesn't write...

15-410,F'088

Copy-on-Write

SimulatedSimulated copy copy
� Copy page table entries to new process
� Mark PTEs read-only in old & new
� Done! (saving factor: 1024)

� Simulation is excellent as long as process doesn't write...

Making it realMaking it real
� Process writes to page (Oops! We lied...)
� Page fault handler responsible

� Kernel makes a copy of the shared frame
� Page tables adjusted

» ...each process points page to private frame
» ...page marked read-write in both PTEs

15-410,F'089

Example Page Table

Virtual Address

stack

code

data

Page table

f029VRW
f237VRX

f981VRW

15-410,F'0810

Copy-on-Write of Address Space

stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410,F'0811

Memory Write � Permission Fault

stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410,F'0812

Copy Into Blank Frame

stack
stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

P0

P9

f029VRWWWWWWWWW
f237VRX

f981VRWWWWWWWWW

15-410,F'0813

Adjust PTE frame pointer, access

stack
stack

code

data
f029VRWWWWWWWWW
f237VRX

f981VRW

P0

P9

f029VRWWWWWWWWW
f237VRX

f982VRW

15-410,F'0814

Zero Pages

Very special case of copy-on-writeVery special case of copy-on-write
� ZFOD = “Zero-fill on demand”

Many process pages are “blank”Many process pages are “blank”
� All of bss
� New heap pages
� New stack pages

Have one Have one system-widesystem-wide all-zero frame all-zero frame
� Everybody points to it
� Logically read-write, physically read-only
� Reads of zeros are free
� Writes cause page faults & cloning

15-410,F'0815

Memory-Mapped Files

Alternative interface to read(),write()Alternative interface to read(),write()
� mmap(addr, len, prot, flags, fd, offset)
� new memory region presents file contents
� write-back policy typically unspecified

� unless you msync()...

BenefitsBenefits
� Avoid serializing pointer-based data structures
� Reads and writes may be much cheaper

� Look, Ma, no syscalls!

15-410,F'0816

Memory-Mapped Files

ImplementationImplementation
� Memory region remembers mmap() parameters
� Page faults trigger read() calls
� Pages stored back via write() to file

Shared memoryShared memory
� Two processes mmap() “the same way”
� Point to same memory region

15-410,F'0817

Page Replacement/Page Eviction

Process always want Process always want moremore memory frames memory frames
� Explicit deallocation is rare
� Page faults are implicit allocations

System inevitably runs out of framesSystem inevitably runs out of frames

Solution outlineSolution outline
� Pick a frame, store contents to disk
� Transfer ownership to new process
� Service fault using this frame

15-410,F'0818

Pick a Frame

Two-level approachTwo-level approach
� Determine # frames each process “deserves”
� “Process” chooses which frame is least-valuable

� Most OS's: kernel actually does the choosing

System-wide approachSystem-wide approach
� Determine globally-least-useful frame

15-410,F'0819

Store Contents to Disk

Where does it belong?Where does it belong?
� Allocate backing store for each page

� What if we run out?

Must we Must we reallyreally store it? store it?
� Read-only code/data: no!

� Can re-fetch from executable
� Saves paging space & disk-write delay
� But file-system read() may be slower than paging-di sk read

� Not modified since last page-in: no!
� Hardware typically provides “ page-dirty ” bit in PTE
� Cheap to “store” a page with dirty==0

15-410,F'0820

Page Eviction Policies

Don't try these at homeDon't try these at home
� FIFO
� Optimal
� LRU

PracticalPractical
� LRU approximation

Current ResearchCurrent Research
� ARC (Adaptive Replacement Cache)
� CAR (Clock with Adaptive Replacement)
� CART (CAR with Temporal Filtering)

15-410,F'0821

Page Eviction Policies

Don't try these at homeDon't try these at home
� FIFO
� Optimal
� LRU

PracticalPractical
� LRU approximation

Current ResearchCurrent Research
� ARC (Adaptive Replacement Cache)
� CAR (Clock with Adaptive Replacement)
� CART (CAR with Temporal Filtering)
� CARTHAGE (CART with Hilarious AppendaGE)

15-410,F'0822

FIFO Page Replacement

ConceptConcept
� Queue of all pages – named as (task id, virtual add ress)
� Page added to tail of queue when first given a fram e
� Always evict oldest page (head of queue)

EvaluationEvaluation
� Fast to “pick a page”
� Stupid

� Will indeed evict old unused startup-code page
� But guaranteed to eventually evict process's favorite page

too!

15-410,F'0823

Optimal Page Replacement

ConceptConcept
� Evict whichever page will be referenced latest

� “Buy the most time” until next page fault

EvaluationEvaluation
� Requires perfect prediction of program execution
� Impossible to implement

So?So?
� Used as upper bound in simulation studies

15-410,F'0824

LRU Page Replacement

ConceptConcept
� Evict Least-Recently-U sed page
� “Past performance may not predict future results”

� ...but it's an important hint!

EvaluationEvaluation
� Would probably be reasonably accurate
� LRU is computable without a fortune teller
� Bookkeeping very expensive

� (right?)

15-410,F'0825

LRU Page Replacement

ConceptConcept
� Evict Least-Recently-U sed page
� “Past performance may not predict future results”

� ...but it's an important hint!

EvaluationEvaluation
� Would probably be reasonably accurate
� LRU is computable without a fortune teller
� Bookkeeping very expensive

� Hardware must sequence-number every page reference
» Evictor must scan every page's sequence number

� Or you can “just” do a doubly-linked-list operation per ref

15-410,F'0826

Approximating LRU

Hybrid hardware/software approachHybrid hardware/software approach
� 1 reference bit per page table entry
� OS sets reference = 0 for all pages
� Hardware sets reference=1 when PTE is used in looku p
� OS periodically scans

� (reference == 1) � “recently used”
� Result:

� Hardware sloppily partitions memory into “recent” v s. “old”
� Software periodically samples, makes decisions

15-410,F'0827

Approximating LRU

““ Second-chance” algorithmSecond-chance” algorithm
� Use stupid FIFO queue to choose victim candidate pa ge
� reference == 0?

� not “recently” used, evict page, steal its frame
� reference == 1?

� “somewhat-recently used” - don't evict page this ti me
� append page to rear of queue (“second chance”)
� set reference = 0

» Process must use page again “soon” for it to be ski pped

ApproximationApproximation
� Observe that queue is randomly sorted

� We are evicting not-recently-used, not least -recently-used

15-410,F'0828

Approximating LRU

““ Clock” algorithmClock” algorithm
� Observe: “Page queue” requires linked list

� Extra memory traffic to update pointers
� Observe: Page queue's order is essentially random

� Doesn't add anything to accuracy
� Revision

� Don't have a queue of pages
� Just treat memory as a circular array

15-410,F'0829

Clock Algorithm

static int nextpage = 0;

boolean reference[NPAGES];

int choose_victim() {

 while (reference[nextpage]) {

 reference[nextpage] = false;

 nextpage = (nextpage+1) % NPAGES;

 }

 return(nextpage);

}

15-410,F'0830

“Page Buffering”

ProblemProblem
� Don't want to evict pages only after a fault needs a frame
� Must wait for disk write before launching disk read (slow!)

““ Assume a blank page...”Assume a blank page...”
� Page fault handler can be much faster

““ page-out daemon”page-out daemon”
� Scans system for dirty pages

� Write to disk
� Clear dirty bit
� Page can be instantly evicted later

� When to scan, how many to store? Indeed...

15-410,F'0831

Frame Allocation

How many frames should a process have?How many frames should a process have?

Minimum allocationMinimum allocation
� Examine worst-case instruction

� Can multi-byte instruction cross page boundary?
� Can memory parameter cross page boundary?
� How many memory parameters?
� Indirect pointers?

15-410,F'0832

“Fair” Frame Allocation

Equal allocationEqual allocation
� Every process gets same number of frames

� “Fair” - in a sense
� Probably wasteful

Proportional allocationProportional allocation
� Every process gets same percentage of residence

� (Everybody 83% resident, larger processes get more frames)
� “Fair” - in a different sense
� Probably the right approach

» Theoretically, encourages greediness

15-410,F'0833

Thrashing

ProblemProblem
� Process needs N frames...

� Repeatedly rendering image to video memory
� Must be able to have all “world data” resident 20x/ second

� ...but OS provides N-1, N/2, etc.

ResultResult
� Every page OS evicts generates “immediate” fault
� More time spent paging than executing
� Paging disk constantly busy

� Denial of “paging service” to other processes
� Widespread unhappiness

15-410,F'0834

“Working-Set” Allocation Model

ApproachApproach
� Determine necessary # frames for each process

� “Working set” - size of frame set you need to get w ork done
� If unavailable, swap entire process out

� (later, swap some other process entirely out)

How to measure working set?How to measure working set?
� Periodically scan all reference bits of process's p ages
� Combine multiple scans (see text)

EvaluationEvaluation
� Expensive
� Can we approximate it?

15-410,F'0835

Page-Fault Frequency Approach

ApproachApproach
� Recall, “thrashing” == “excessive” paging
� Adjust per-process frame quotas to balance fault ra tes

� System-wide “average page-fault rate” (10 faults/se cond)
� Process A fault rate “too high”: increase frame quo ta
� Process A fault rate “too low”: reduce frame quota

What if quota increase doesn't help?What if quota increase doesn't help?
� If giving you some more frames didn't help, maybe you

need a lot more frames than you have...
� Swap you out entirely for a while

15-410,F'0836

Program Optimizations

Is paging an “OS problem”?Is paging an “OS problem”?
� Can a programmer reduce working-set size?

Locality depends on data structuresLocality depends on data structures
� Arrays encourage sequential accesses

� Many references to same page
� Predictable access to next page

� Random pointer data structures scatter references

Compiler & linker can help tooCompiler & linker can help too
� Don't split a routine across two pages
� Place helper functions on same page as main routine

Effects can be Effects can be dramaticdramatic

15-410,F'0837

Summary

Speed hacksSpeed hacks

Page-replacement policiesPage-replacement policies
� The eviction problem
� Sample policies

� For real: LRU approximation with hardware support
� Page buffering
� Frame Allocation (process page quotas)

Definition & use ofDefinition & use of
� Dirty bit, reference bit

Virtual-memory usage optimizationsVirtual-memory usage optimizations

