
15-410, F'081

Exam #1
Oct. 15, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L21_Exam

15-410
“My other car is a cdr” -- Unknown

15-410, F'083

Synchronization

Checkpoint 2 – WednesdayCheckpoint 2 – Wednesday
� Please read the handout warnings about context swit ch

and mode switch and IRET very carefully
� Each warning is there because of a big mistake whic h was

very painful for previous students

Asking for troubleAsking for trouble
� If your code isn't in your 410 AFS space every day you are

asking for trouble
� If your code isn't built and tested on Andrew Linux every

two or three days you are asking for trouble
� If you aren't using source control, that is probabl y a

mistake

15-410, F'084

Synchronization

Crash boxCrash box
� How many people have had to wait in line to run cod e on

the crash box?
� How long?

15-410, F'086

Synchronization

Debugging adviceDebugging advice
� Last year as I was buying lunch I received a fortun e

15-410, F'087

Synchronization

Debugging adviceDebugging advice
� Last year as I was buying lunch I received a fortun e

Image credit: Kartik Subramanian

15-410, F'088

A Word on the Final Exam

DisclaimerDisclaimer
� Past performance is not a guarantee of future resul ts

The course will changeThe course will change
� Up to now: “basics” - What you need for Project 3
� Coming: advanced topics

� Design issues
� Things you won't experience via implementation

Examination will change to matchExamination will change to match
� More design questions
� Some things you won't have implemented (text useful !!)
� Still 3 hours, but more stuff (~100 points, ~7 ques tions)

15-410, F'089

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

Question 6Question 6

15-410, F'0810

Q1 – Reasons for using threads

Answers straightforwardAnswers straightforward
� For at least the next 5 years we will live in a “mu lti-core

world”
� For full credit, be sure not only to state an answe r but to

do so in a way which makes it clear you understand what
the concepts mean

15-410, F'0811

Q2 – Dining Philosophers

Part A (setup)Part A (setup)
� Three philosophers, one pool of four chopsticks
� As with the homework question �though for a totally

different reason �you can't have a cycle in the wait graph
� Note: you can have “hold & wait”

» acquire_one_chopstick() is called twice in a row
» If it returns immediately once and blocks once, tha t is

exactly “waiting while holding”, i.e., hold & wait!

Part B (“Along comes an octopus...”)Part B (“Along comes an octopus...”)
� Assume you have a deadlock. How many chopsticks ar e

held (what is the largest number possible)?

15-410, F'0812

Q2 – Dining Philosophers

DiscussionDiscussion
� If you firmly understand deadlock, the question mig ht be a

little novel but shouldn't be tough
� If there is a deadlock question on the final it wil l probably

be “different from this”.

15-410, F'0813

Q3 – “Philosophers Dining”

The missionThe mission
� Write a chopstick-pool object

� Involves locking and synchronization
� Not too hard (actually, it's a “trick question”)

Common issuesCommon issues
� Confusion about pointers and malloc()

� Message from the universe: it is really time to ha ve a solid
grasp on this issue. As necessary, see course staf f. Really.

� “Paradise lost”
� If somebody can revoke your happiness, you'd better check.

» This is a key concept.
» Review lecture if necessary.

15-410, F'0814

Q4 – Critical-section algorithm

““ Dannenberg's Algorithm”Dannenberg's Algorithm”
� Zero of the three critical-section properties hold!
� Failure of “bounded waiting” is a little tricky to show

� But then, that property is frequently hard work
� Warning: do not show “lock is not acquired in FIFO order” -

that is not a requirement!
� Three threads is enough

� Failures of mutual exclusion and progress can be sh own
via short traces

� Two threads “inside the gate” suffice; traces are s hort

AdviceAdvice
� Being able to write a short trace showing how code goes

awry is important. You might have some code “like that”.

15-410, F'0815

Q5 – Nuts & Bolts

head.S double-fault handlerhead.S double-fault handler
� “Stuff values into registers” - why?
� “Set stack pointer to something” - why?
� “Set stack pointer to something else ” - why??

Common misconceptionsCommon misconceptions
� %SS, etc., are “spare” or “temporary” registers

� Sadly, they are critical for correct execution. Yo u can't
ignore them.

� %EAX contains only “return values”
� Most of the time it's just another caller-save register

� Subtracting from %ESP makes stack space available
� It consumes space (for a useful purpose?)

15-410, F'0816

Q6 – Design

To SIGSEGV or not to SIGSEGV?To SIGSEGV or not to SIGSEGV?
� Best answers are about costs
� Kernel entry/exit is a relevant cost... but there a re others

� Memory-copy operations are costly
� Disk operations are more costly
� Costs should be combined according to a model of ho w

execution proceeds
� Various costs are associated with code

� Portability was mentioned sometimes (though sometim es in
ways we found confusing)

� Modularity, predictability, ...

Graded fairly gentlyGraded fairly gently

15-410, F'0817

Breakdown

90% = 67.590% = 67.5 27 students27 students

80% = 60.080% = 60.0 25 students25 students

70% = 52.570% = 52.5 13 students (52 and up)13 students (52 and up)

60% = 45.060% = 45.0 4 students (44 and up) 4 students (44 and up)

50% = 37.550% = 37.5 2 students 2 students

<50%<50% 3 students 3 students

ComparisonComparison
� Scores are higher than typical (3-5 points)

15-410, F'0818

Implications

Score below 70%?Score below 70%?
� Something went really wrong!
� You are strongly advised to debug the situation
� To pass the class you must demonstrate reasonable

proficiency on exams (project grades alone are not
sufficient)

� See syllabus

Above 70%?Above 70%?
� Probably a 50/50 chance that final-exam score will be one

grade lower...

