
15-410, F’081

Real Time Systems

Oct 24, 2008

Roger B. DannenbergRoger B. Dannenberg

Dave Dave EckhardtEckhardt

Additional material by Additional material by Vishakha Gupta

15-410
“Arbitrarily Bad”

15-410, F’082

Scheduling on Mars

What happened on Mars?What happened on Mars?
 (1997)

Photo credits: NASA

15-410, F’083

What Happened On Mars?

Mars Pathfinder probe (1997)Mars Pathfinder probe (1997)
Nice launchNice launch
Nice transitNice transit
Nice de-orbitNice de-orbit
Nice thump-down (inflatable air-bag)Nice thump-down (inflatable air-bag)
Nice rover disembarkationNice rover disembarkation
Nice rover Nice rover spontaneous rebootsspontaneous reboots

Photo credits: NASA

15-410, F’084

Hardware Design

Bus

Instrument
#1

Instrument
#2

Instrument
#3

Computer
and

Bus
Controller

Weather Sensors

15-410, F’085

Software Design

Bus
Activity

Distribute
Data

Bus
Sched

Pri: 1Pri: 3

T1 T2
Other Computation

REPEAT…

So: transfer data
compute
transfer data
compute
…

15-410, F’086

Watchdog Timer

Bus
Activity

Distribute
Data

Bus
Sched

Pri: 1Pri: 3

Other Computation
T1 T2

T1 < T2 or else system reboots!!!

Computer

Watchdog
Timer

(very simple
hardware)

“hi, I’m still alive”

“I haven’t heard from you
lately, time to reboot!”

15-410, F’087

Software Design

Bus
Activity

Distribute
Data

Bus
Sched

Pri: 1Pri: 3

Other Computation
T1 T2

Other threads:
W (weather data thread): low priority
Many medium priority tasks

Distribute Data sends data to W via a software
pipe facility

15-410, F’088

What could go wrong?

Weather thread (W)Weather thread (W) locks pipe to read data locks pipe to read data
High-priority High-priority Distribute DataDistribute Data must wait to write data must wait to write data

Photo credit: NASA

15-410, F’089

What could go wrong?

WW locks pipe structure to read message locks pipe structure to read message
InterruptInterrupt makes makes other tasksother tasks runnablerunnable

 Higher priority, so preempt W
 W does not release lock for a long time…

 Distribute DataDistribute Data becomes becomes runnablerunnable
 Very high priority, so preempts other tasks
 Distribute Data tries to send data to W, but blocks
 Other tasks resume, run for a long time…

15-410, F’0810

Priority Inversion

Bus
Activity

Distribute
Data

Bus
Sched

Pri: 1Pri: 3

W

Other Tasks
T2

T1 < T2 : Oh no! system reboots!!!⁄

Attempt lock
and block time

15-410, F’0811

W (pri 5)

Priority Inversion
Bus
Activity

Distribute
Data

Bus
Sche
d

Pri: 1Pri: 3

W

Other Tasks

T2Attempt lock
and block

Distribute
Data (pri 3)

Wait for lock

Other Computation (pri 4)

Wait for CPU What if W could
“borrow” Distribute
Data’s priority?

15-410, F’0812

Priority Inheritance

Bus
Activity

Distribute
Data

Bus
Sched

Pri: 1Pri: 3

W

Other Tasks

Inherit priority from Distribute Data
Exit critical section, release lock
Resume low priority

Attempt lock
and block

Acquire lock

15-410, F’0813

History of an Idea

Priority Inheritance Protocols: An Approach toPriority Inheritance Protocols: An Approach to
Real-Time SynchronizationReal-Time Synchronization
 IEEE Transactions on Computers 39:9

 Lui Sha (CMU SEI)
 Ragunathan Rajkumar (IBM Research ⇒ CMU ECE)
 John Lehoczky (CMU Statistics)

15-410, F’0814

History of an Idea

EventsEvents
 1987-12 “Manuscript” received
 1988-05 Revised
 1990-09 Published
 1997-07 Rescues Mars Pathfinder

History courtesy of Mike Jones and Glen ReevesHistory courtesy of Mike Jones and Glen Reeves
 http://www.cs.cmu.edu/~rajkumar/mars.html
 http://www.cs.duke.edu/~carla/mars.html

15-410, F’0815

Test Your Understanding

What could go wrong with an atomic exchange/spinWhat could go wrong with an atomic exchange/spin
lock?lock?

Assume threads have fixed priorities.Assume threads have fixed priorities.

Explain how priority inversion could arise from a callExplain how priority inversion could arise from a call
to to mallocmalloc..

15-410, F’0816

Real-Time Systems

Types of SystemsTypes of Systems
Rate Monotonic SchedulingRate Monotonic Scheduling
Earliest Deadline First SchedulingEarliest Deadline First Scheduling
Priority InversionPriority Inversion
Real-Time Audio Application/OS InteractionsReal-Time Audio Application/OS Interactions

15-410, F’0817

Embedded Systems Scheduling
One Big LoopOne Big Loop

 Polled I/O
 One thread: while (true) { task1(); task2(); … }

Time-driven: wait for next period at top of loopTime-driven: wait for next period at top of loop
Multiple threadsMultiple threads

 Round-Robin, or
Time-driven: run tasks at fixed frequencies

 Can incorporate interrupt-driven I/O

Static Priority-based Scheduling/Rate MonotonicStatic Priority-based Scheduling/Rate Monotonic
Deadline SchedulingDeadline Scheduling

15-410, F’0818

Rate Monotonic Scheduling

AA method of assigning fixed priorities to a set ofmethod of assigning fixed priorities to a set of
periodic processesperiodic processes

Higher rate (frequency) Higher rate (frequency) ⇒⇒ Higher priority Higher priority

Formal framework for reasoning about Formal framework for reasoning about schedulabilityschedulability
Schedulable if:Schedulable if:

preemption + execution + blocking < deadline

=> => Schedulability Schedulability is a key question for designers <=is a key question for designers <=

15-410, F’0819

Assumptions

Periodic tasksPeriodic tasks
Tasks become ready to execute at beginning of theirTasks become ready to execute at beginning of their

periodsperiods
TasksTasks runnable runnable until execution is complete (1 burst)until execution is complete (1 burst)
Task deadlines are always start of next periodTask deadlines are always start of next period
No task is more important/critical than anotherNo task is more important/critical than another
Tasks account for all execution timeTasks account for all execution time

 Task switching is instantaneous
 No interrupts

15-410, F’0820

Schedulability Tests

Utilization Bound Test - fast, conservativeUtilization Bound Test - fast, conservative

Response Time Test - slower, exactResponse Time Test - slower, exact

15-410, F’0821

Utilization

Computation time: Computation time: CCii

Period: TPeriod: Tii,,
Utilization: Utilization: UUii = = CCii/T/Tii

Total Utilization: Total Utilization: ∑∑UUii

Note that 0 < Note that 0 < ∑∑UUii < 1< 1

15-410, F’0822

Example

Total utilization for 3 tasks is .200 + .267 + .286 = .753

Example from 14342 –
Fundamentals of
Embedded Systems

15-410, F’0823

Utilization Bound Test

Are all myAre all my taskstasks
schedulable?schedulable?

Rate MonotonicRate Monotonic
Scheduling:Scheduling:
 Utilization for n tasks: U(n) = n(21/n – 1)
 This is a worst case (lower) bound

Test: (Test: (∑∑ UUii) < U(n)) < U(n)

15-410, F’0824

Example

Total utilization for 3 tasks is .200 + .267 + .286 = .753
U(3) = .779

Total utilization for 3 tasks < U(3)
The periodic tasks in the sample problem are schedulable
According to the upper bound (UB) test

Example from 14342 –
Fundamentals of
Embedded Systems

15-410, F’0825

Timeline for the example

15-410, F’0826

Response Time Test

Theorem: For a set of Theorem: For a set of independent periodic tasks, if
each task meets its deadline with worst case task
phasing, the deadline will always be met

System might be schedulable with utilization > U(n),
but it depends on the particular task mix

15-410, F’0827

Rate Monotonic Extensions

Blocking:Blocking:
 preemption + execution + blocking < deadline

Interrupt tasksInterrupt tasks
Addition/Deletion of tasksAddition/Deletion of tasks
Aperiodic Aperiodic tasks with computational budgettasks with computational budget

15-410, F’0828

Earliest Deadline First

A dynamic scheduling principleA dynamic scheduling principle
Assume independent tasksAssume independent tasks
Tasks in a priority queue, ordered by deadlineTasks in a priority queue, ordered by deadline
With periodic processes with deadlines = periods,With periodic processes with deadlines = periods,

EDF has a utilization bound of 100%EDF has a utilization bound of 100%
((optimaloptimal))

15-410, F’0829

Example

15-410, F’0830

++ Optimal for schedulable task set Optimal for schedulable task set
++ Task set need not be periodic Task set need not be periodic
++ Deadlines need not equal periods Deadlines need not equal periods
–– Overload behavior can be arbitrarily bad Overload behavior can be arbitrarily bad
–– Considered more difficult to implement than static Considered more difficult to implement than static

priority schemespriority schemes

Pros and Cons

15-410, F’0831

Rate Monotonic vs.
Earliest Deadline First
Rate MonotonicRate Monotonic

 More widely supported
 Maps onto static priority schedulers (NT, CE, Linux, OS X)

Earliest Deadline FirstEarliest Deadline First
 Sometimes higher utilization
 Less restrictive assumptions

Neither is really complicatedNeither is really complicated
 If you have a well-defined problem, analysis is

straightforward
 If not, think carefully about failure modes (which are

different) and costs

15-410, F’0832

Real World/Real Time Audio

What do you have to work with?What do you have to work with?
What are the implications?What are the implications?
Putting it together.Putting it together.
What performance can you get?What performance can you get?

15-410, F’0833

Audio: What Can You Assume?
Potential for priority inversionPotential for priority inversion
System response time is an issue:System response time is an issue:

system_latencysystem_latency + + preemption preemption + execution + blocking < deadline+ execution + blocking < deadline

Static Priority SchedulingStatic Priority Scheduling
(At least) two application classes:(At least) two application classes:

 High audio latency (iTunes, sound effects, audio editor)
 Compute audio well ahead (>100 ms)
 Leave it to device driver to deliver samples on time

 Low audio latency (VoIP, Guitar Hero, real-time music synthesis)
 Audio depends on real-time input
 Only compute 1-10ms ahead of time
 User-level application scheduling is critical

15-410, F’0834

Low Audio Latency
Implications
Need to use static priority scheduling Need to use static priority scheduling ⇒⇒

 1ms to compute audio < 10ms to refresh display
Priority Inversion Priority Inversion is is a problem a problem ⇒⇒

No lockingNo locking ⇒⇒
No shared data structuresNo shared data structures ⇒⇒
 Threads communicate via lock-free FIFO Threads communicate via lock-free FIFO
 No No mallocmalloc ⇒⇒

 independent memory pool per thread independent memory pool per thread
OR only lock-free shared structures OR only lock-free shared structures ⇒⇒
 No No malloc malloc ⇒⇒ write your own write your own
+ lots of synchronous polling for I/O+ lots of synchronous polling for I/O

15-410, F’0835

Putting It Together
while (true) {
 audio_read(&buf);
 while (!input.empty())
 process_input();
 process_audio(&buf);
 // maybe send data to
 // output fifo
 audio_write(&buf);
}

Audio Processing

Main Program

FIFOs
(No other
shared
memory)

15-410, F’0836

What Performance Can You
Get?
Current audio applications can deliver end-to-endCurrent audio applications can deliver end-to-end

latencies in the 3 to 10ms range.latencies in the 3 to 10ms range.
Note: Note: ““nativenative”” windows audio is quite poor, but 3rd windows audio is quite poor, but 3rd

party (ASIO) drivers exist to improve performance.party (ASIO) drivers exist to improve performance.
A big issue is A big issue is ““system latencysystem latency””::

 SGI/Irix was a leader: hard real-time kernel
 Linux has evolved rapidly (now <1ms)
 OS X: special real-time threads for audio
 Windows: worst-case system latency is high

15-410, F’0837

Priority InversionPriority Inversion
Real-Time SchedulingReal-Time Scheduling

 Rate Monotonic
 Earliest Deadline First

Implications of Real-World OS on Real-TimeImplications of Real-World OS on Real-Time
ApplicationsApplications
 Polling
 Locks limited by Priority Inversion
 (Un)shared memory

Summary

15-410, F’0838

Further Reading

Comparing Rate Monotonic to Earliest Deadline First:Comparing Rate Monotonic to Earliest Deadline First:

 Giorgio C. Buttazzo, “Rate Monotonic vs. EDF: Judgment
Day,” Real Time Systems 29(1) (Jan 2005), The
Netherlands: Springer, pp 5-26.

