
15-410, F’081

IPC & RPC
Nov. 5, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg

L28_IPCRPC

15-410
“...Mooooo!...”

15-410, F’082

Outline

A Pattern LanguageA Pattern Language
� Client view, server view, world view

IPC – InterProcess CommunicationIPC – InterProcess Communication

RPC – Remote Procedure CallRPC – Remote Procedure Call

TextbookTextbook
� Sections 3.4-3.6

15-410, F’083

Client View

SendClient Request

 ReceiveClient Response

15-410, F’084

Server View

 Send Response Server

Request ServerReceive

15-410, F’085

Receiver Prepares

ServerReceive

15-410, F’086

Client Sends Request

Send

ServerReceive

Client Request

15-410, F’087

Send Matches Receive

Send

ServerReceive

Client Request Request ServerReceive

15-410, F’088

Server Sends Response

Send

ServerReceive

 Send

Client Request

Response Server

Request ServerReceive

15-410, F’089

Receive Matches Send

Send

ServerReceive

 Send

Client Request

Response Server

Request ServerReceive

 Receive Send Response ServerClient Response

15-410, F’0810

Scope of “IPC”

Communicating processes on one machineCommunicating processes on one machine

What about multiple machines?What about multiple machines?
� Virtualize single-machine IPC
� Switch to a “network” model

� Failures happen
� Administrative domain switch
� ...
� (“RPC”)

15-410, F’0811

IPC parts

NamingNaming

Synchronization/bufferingSynchronization/buffering

Message body issuesMessage body issues
� Copy vs. reference
� Size

15-410, F’0812

Naming

Message sent to Message sent to processprocess or to or to mailboxmailbox ??

Process modelProcess model
� send(P, msg)
� receive(Q, &msg) or receive(&id, &msg)

No need to set up “communication link”No need to set up “communication link”
� But you need to know process id's
� You get only one “link” per process pair

15-410, F’0813

Naming

Mailbox modelMailbox model
� send(box1, msg)
� receive(box1, &msg) or receive(&box, &msg)

Where do mailbox id's come from?Where do mailbox id's come from?
� “name server” approach

box = createmailbox();

register(box1, “Terry's process”);

boxT = lookup(“Terry's process”);

File system approach – File system approach – greatgreat (if you have one) (if you have one)
box = createmailbox(“/tmp/Terry”);

15-410, F’0814

Multiple Senders

ProblemProblem
� Receiver needs to know who sent request

Typical solutionTypical solution
� “Message” not just a byte array
� OS imposes structure

� sender id (maybe process id and mailbox id)
� maybe: type, priority, ...

15-410, F’0815

Synchronization

IssueIssue
� Does communication imply synchronization?

Blocking send()?Blocking send()?
� Ok for request/response pattern
� Provides assurance of message delivery
� Bad for producer/consumer pattern

Non-blocking send()?Non-blocking send()?
� Raises buffering issue (below)

15-410, F’0816

Synchronization

Blocking receive()?Blocking receive()?
� Ok/good for “server thread”

� Remember, de-scheduling is a kernel service
� Ok/good for request/response pattern
� Awkward for some servers

� Abort connection when client is “too idle”

Pure-non-blocking receive?Pure-non-blocking receive?
� Ok for polling
� Polling is costly

15-410, F’0817

Synchronization

Receive-with-timeoutReceive-with-timeout
� Wait for message
� Abort if timeout expires
� Can be good for real-time systems
� What timeout value is appropriate?

15-410, F’0818

Synchronization

Meta-receiveMeta-receive
� Specify a group of mailboxes
� Wake up on first message

Receive-scanReceive-scan
� Specify list of mailboxes, timeout
� OS indicates which mailbox(es) are “ready” for what
� Unix: select(), poll()

15-410, F’0819

Buffering

IssueIssue
� How much space does OS provide “for free”?
� “Kernel memory” limited!

OptionsOptions
� No buffering

� implies blocking send
� Fixed size, undefined size

� Send blocks unpredictably

15-410, F’0820

A Buffering Problem

P1P1
send(P2, p1-my-status)

receive(P2, &p1-peer-status)

15-410, F’0821

A Buffering Problem

P1P1
send(P2, p1-my-status)

receive(P2, &p1-peer-status)

P2P2
send(P1, p2-my-status)

receive(P1, &p2-peer-status)

What's the problem?What's the problem?
� Can you draw a picture of it?

15-410, F’0822

Message Size Issue

Ok to copy Ok to copy smallsmall messages sender messages sender �� receiver receiver

Bad to copy Bad to copy 1-megabyte1-megabyte messages messages
� (Why?)

Bad suggestion: “Chop up large messages”Bad suggestion: “Chop up large messages”
� Why?

15-410, F’0823

Message Size Issue

Ok to copy Ok to copy smallsmall messages sender messages sender �� receiver receiver

Bad to copy Bad to copy 1-megabyte1-megabyte messages messages
� (Why?)

Bad suggestion: “Chop up large messages”Bad suggestion: “Chop up large messages”
� Evades the issue!

15-410, F’0824

“Out-of-line” Data

Message can Message can refer torefer to memory regions memory regions
� (page-aligned, multiple-page)
� Either “copy” or transfer ownership to receiver
� Can share the physical memory

� Mooooo!

15-410, F’0825

“Rendezvous”

ConceptConcept
� Blocking send
� Blocking receive

Great for OSGreat for OS
� No buffering required!

Theoretically interestingTheoretically interesting

Popular in a variety of languagesPopular in a variety of languages
� (most of them called “Ada”)

15-410, F’0826

Example: Mach IPC

Why study Mach?Why study Mach?
� “Pure” “clean” capability/message-passing system
� Low abstraction count
� This is CMU...

Why not?Why not?
� Failed to reach market
� Performance problems with multi-server approach?
� Verdict: hmm...

15-410, F’0827

Mach IPC – ports

Port: Mach “mailbox” objectPort: Mach “mailbox” object
� One receiver

� (one “backup” receiver)
� Potentially many senders

Ports identify system objectsPorts identify system objects
� Each task identified/controlled by a port
� Each thread identified/controlled by a port
� Kernel exceptions delivered to “exception port”

� “External Pager Interface” - page faults in user sp ace!

15-410, F’0828

Mach IPC – Port Rights

Receive rightsReceive rights
� “Receive end” of a port
� Held by one task
� Capability typically unpublished

� receive rights imply ownership

Send rightsSend rights
� “Send end” - ability to transmit message to mailbox
� Frequently published via “name server” task
� Confer no rights (beyond “denial of service”)

15-410, F’0829

Mach IPC – Message Contents

Memory regionsMemory regions
� In-line for “small” messages (copied)
� Out-of-line for “large” messages

� Sender may de-allocate on send
� Otherwise, copy-on-write

““ Port rights”Port rights”
� Sender specifies task-local port #
� OS translates to internal port-id while queued
� Receiver observes task-local port #

15-410, F’0830

Mach IPC – Operations

sendsend
� block, block(n milliseconds), don't-block
� “send just one”

� when destination full, queue 1 message in sender thread
� sender notified when transfer completes

receivereceive
� receive from port
� receive from port set
� block, block(n milliseconds), don't-block

15-410, F’0831

Mach IPC – “RPC”

Common pattern: “Remote” Procedure CallCommon pattern: “Remote” Procedure Call
� Really: “cross-task” procedure call

Client synchronization/message flowClient synchronization/message flow
� Blocking send, blocking receive

Client must allow server to respondClient must allow server to respond
� Transfer “send rights” in message

� “Send-once rights” speed hack

Server message flow (N threads)Server message flow (N threads)
� Blocking receive, non-blocking send

15-410, F’0832

Mach IPC – Naming

Port send rights are OS-managed capabilitiesPort send rights are OS-managed capabilities
� unguessable, unforgeable

How to contact a server?How to contact a server?
� Ask the name server task

� Trusted – source of all capabilities

How to contact the name server?How to contact the name server?
� Task creator specifies name server for new task

� Can create custom environment for task tree
» By convention, send rights to name server are locat ed

at a particular client port number (like
stdin/stdout/stderr)

� System boot task launches nameserver, gives out rig hts

15-410, F’0833

IPC Summary

NamingNaming
� Name server?
� File system?

Queueing/blockingQueueing/blocking

Copy/share/transferCopy/share/transfer

A Unix surpriseA Unix surprise
� sendmsg()/recvmsg() pass file descriptors!

15-410, F’0834

RPC Overview

RPC = Remote RPC = Remote Procedure CallProcedure Call

Concept: extend IPC across machinesConcept: extend IPC across machines
� Maybe across “administrative domains”

MarshallingMarshalling

Server locationServer location

Call semanticsCall semantics

Request flowRequest flow

15-410, F’0835

RPC Model

ApproachApproach
d = computeNthDigit(CONST_PI, 3000);
� Abstract away from “who computes it”
� Should “work the same” when remote Cray does the jo b

IssuesIssues
� Must specify server somehow
� What “digit value” is “server down”?

� Exceptions useful in “modern” languages

15-410, F’0836

Marshalling

Values must cross the networkValues must cross the network

Machine formats differMachine formats differ
� Integer byte order

� www.scieng.com/pdf/byteorder.pdf
� Floating point format

� IEEE 754 or not
� Memory packing/alignment issues

15-410, F’0837

Marshalling

Define a “network format”Define a “network format”
� ASN.1 - “self-describing” via in-line tags
� XDR – not

““ Serialize” language-level object to byte streamSerialize” language-level object to byte stream
� Rules typically recursive

� Serialize a struct by serializing its fields in ord er
� Implementation probably should not be recursive

� (Why not?)

15-410, F’0838

Marshalling

IssuesIssues
� Some types don't translate well

� Ada has ranged integers, e.g., 44..59
� Not everybody really likes 64-bit ints
� Floating point formats are religious issues

� Performance!
� Memory speed � network speed

� The dreaded “pointer problem”

15-410, F’0839

Marshalling

struct node {

 int value;

 struct node *neighbors[4];

} nodes[1024];

nnodes = sizeof(nodes)/sizeof(nodes[0]);

n = occupancy(nodes, nnodes);

bn = best_neighbor(node);

i = value(node);

Implications?Implications?

15-410, F’0840

Marshalling

n = occupancy(nodes, nnodes);
� Marshall array – ok

bn = best_neighbor(node);
� Marshall graph structure – not so ok

i = value(node);
� Avoiding marshalling graph – not obvious

� “Node fault”??

15-410, F’0841

Server Location

Which machine?Which machine?
� Multiple AFS cells on the planet
� Each has multiple file servers

ApproachesApproaches
� Special hostnames: www .cmu.edu
� Machine lists

� AFS CellSrvDB /usr/vice/etc/CellServDB
� DNS SRV records (RFC 2782)

15-410, F’0842

Server Location

Which port?Which port?
� Must distinguish services on one machine

� Single machine can be AFS volume, vldb, pt server
� Fixed port assignment

� AFS: fileserver UDP 7000, volume location 7003
� /etc/services or www.iana.org/assignments/port-num bers
� RFC 2468 www.rfc-editor.org/rfc/rfc2468.txt

� Dynamic port assignment
� Contact “courier” / “matchmaker” service via RPC
� ...on a fixed port assignment!

15-410, F’0843

Call Semantics

Typically, caller blocksTypically, caller blocks
� Matches procedure call semantics

Blocking can be expensiveBlocking can be expensive
� By a factor of a million(!!) over real procedure call

““ Asynchronous RPC”Asynchronous RPC”
� Transmit request, do other work, check for reply
� Not really “PC” any more
� More like programming language “futures”

15-410, F’0844

Fun Call Semantics

Batch RPCBatch RPC
� Send list of procedure calls
� Later calls can use results of earlier calls

IssuesIssues
� Abort batch if one call fails?

� Yet another programming language?
� Typically wrecks “procedure call” abstraction

� Your code must make N calls before 1 st answer

15-410, F’0845

Fun Call Semantics

Batch RPC ExamplesBatch RPC Examples
� NFS v4, RFC 3010
� Bloch, A Practical Approach to Replication of Abstr act

Data Objects

15-410, F’0846

Sad Call semantics

Network failureNetwork failure
� Retransmit request

� How long?

Server rebootServer reboot
� Does client deal with RPC session restart?
� Did the call “happen” or not?

� Retransmitting “remove foo.c” all day long may not be safe!

15-410, F’0847

Client Flow

Client code calls Client code calls stubstub routine routine
� “Regular code” which encapsulates the magic

Stub routineStub routine
� Locates communication channel

� If not established: costly location/set-up/authenti cation
� Marshals information

� Procedure #, parameters
� Sends message, awaits reply
� Unmarshals reply, returns to user code

15-410, F’0848

Server Flow

Thread pool runs Thread pool runs skeletonskeleton code code

Skeleton code Skeleton code
� Waits for request from a client
� Locates client state

� Authentication/encryption context
� Unmarshals parameters
� Calls “real code”
� Marshals reply
� Sends reply

15-410, F’0849

RPC Deployment

Define interfaceDefine interface
� Get it right, you'll live with it for a while!
� AFS & NFS RPC layers ~15 years old

““ Stub generator”Stub generator”
� Special-purpose compiler
� Turns “interface spec” into stubs & skeleton

Link stub code with client & serverLink stub code with client & server

Run a server!Run a server!

15-410, F’0850

Java RMI

RRemote emote MMethod ethod IInvocationnvocation

Serialization: programmer/language cooperationSerialization: programmer/language cooperation
� Dangerously subtle!

� Bloch, Effective Java

RMI > RPCRMI > RPC
� Remote methods � remote procedures
� Parameters can be (differently) remote

� Client on A can call method of class implemented on B
passing object located on C

» (slowly)

15-410, F’0851

RPC Summary

RPC is lots of funRPC is lots of fun

So much fun that lots of things don't do itSo much fun that lots of things don't do it
� SMTP
� HTTP

RPC = IPCRPC = IPC
� + server location, marshalling, network failure, de lays
� - special copy tricks, speed

Remote Objects? Remote Objects? Effective JavaEffective Java , , Bitter JavaBitter Java

