
1

NFS & AFS

Dave Eckhardt
Roger Dannenberg

“Good judgment comes from experience…
Experience comes from bad judgment.”
- Nasrudin?

2

Synchronization

� Crash box?
� Today

� NFS, AFS
� Partially covered by textbook: 11.9, 17.6
� Chapter 17 is short, why not just read it?

3

Outline

� Why remote file systems?
� VFS interception
� NFS vs. AFS

� Ping-pong mode: 5 topics discussed twice

4

Why?

� Why remote file systems?
� Lots of “access data everywhere” technologies

� Laptop
� 6G Hitachi MicroDrive fits in a CompactFlash

slot
� Multi-gigabyte flash-memory keychain USB

devices
� iPod

� Are remote file systems dinosaurs?

5

Remote File System Benefits
� Reliability

� Not many people carry multiple copies of data
� Multiple copies with you aren't much protection

� Backups are nice
� Machine rooms are nice

� Temperature-controlled, humidity-controlled
� Fire-suppressed

� Time travel is nice too
� Sharing

� Allows multiple users to access data
� May provide authentication mechanism

6

Remote File System Benefits

� Scalability

� Large disks are cheaper
� Locality of reference

� You don't use every file every day...
� Why carry everything in expensive portable storage?

� Auditability

� Easier to know who said what when with central
storage...

7

What Is A Remote File System?

� OS-centric view

� Something that supports file-system system
calls “for us”

� Other possible views

� RFS/DFS architect, for example
� Mostly out of scope for this class

� Compared today

� Sun Microsystems NFS (specifics are v2)
� CMU/IBM/Transarc/IBM/open-source AFS

8

VFS interception

� VFS provides “pluggable” file systems
� Standard flow of remote access

� User process calls read()
� Kernel dispatches to VOP_READ() in some VFS
� nfs_read()

� check local cache
� send RPC to remote NFS server
� put process to sleep

9

VFS interception

� Standard flow of remote access (continued)

� client kernel process manages call to server
� retransmit if necessary
� convert RPC response to file system buffer
� store in local cache
� wake up user process

� back to nfs_read()
� copy bytes to user memory

� Same story for AFS

10

Comparison

� Architectural assumptions & goals
� Namespace
� Authentication, access control
� I/O flow
� Rough edges

11

NFS Assumptions, goals

� Workgroup file system

� Small number of clients
� Very small number of servers

� Single administrative domain

� All machines agree on “set of users”
� ...which users are in which groups

� Client machines run mostly-trusted OS
� “User #37 says read(...)”

12

NFS Assumptions, goals

� “Stateless” file server

� Of course files are “state”, but...
� Server exports files without creating extra state

� No list of “who has this file open”
� No “pending transactions” across crash

� Result: crash recovery “fast”, protocol “simple”

13

NFS Assumptions, goals

� “Stateless” file server

� Of course files are “state”, but...
� Server exports files without creating extra state

� No list of “who has this file open”
� No “pending transactions” across crash

� Result: crash recovery “fast”, protocol “simple”
� Some inherently “stateful” operations (locking!!)

14

NFS Assumptions, goals

� “Stateless” file server

� Of course files are “state”, but...
� Server exports files without creating extra state

� No list of “who has this file open”
� No “pending transactions” across crash

� Result: crash recovery “fast”, protocol “simple”
� Some inherently “stateful” operations (locking!!)

� Handled by “separate service” “outside of NFS”
� Slick trick, eh?

15

AFS Assumptions, goals

� Global distributed file system

� Uncountable clients, servers
� “One AFS”, like “one Internet”

� Why would you want more than one?

� Multiple administrative domains

� username@cellname
� de0u@andrew.cmu.edu
� davide@cs.cmu.edu

16

AFS Assumptions, goals

� Client machines are un-trusted

� Must prove they act for a specific user
� Secure RPC layer

� Anonymous “system:anyuser”
� Client machines have disks (!!)

� Can cache whole files over long periods
� Write/write and write/read sharing are rare

� Most files updated by one user
� Most users on one machine at a time

17

AFS Assumptions, goals

� Support many clients

� 1000 machines could cache a single file
� Some local, some (very) remote

18

NFS Namespace

� Constructed by client-side file system mounts

� mount server1:/usr/local /usr/local
� mount server2:/usr/spool/mail /usr/spool/mail

� Group of clients can achieve common
namespace

� Every machine can execute same mount
sequence at boot

� If system administrators are diligent

19

NFS Namespace

� “Auto-mount” process mounts based on “maps”

� /home/dae means server1:/home/dae
� /home/owens means server2:/home/owens

� Referring to something in /home may trigger an
automatic mount

� “After a while” the remote file system may be
automatically unmounted

� Lots of corner cases

20

NFS Security

� Client machine presents credentials

� user #, list of group #s – from Unix process
� Server accepts or rejects credentials

� “root squashing”
� map uid 0 to uid -1 unless client on “special machine”

list

� Kernel process on server “adopts” credentials

� Sets user #, group vector based on RPC
� Makes system call (e.g., read()) with those

credentials

21

AFS Namespace

� Assumed-global list of AFS cells
� Everybody sees same files in each cell

� Multiple servers inside cell invisible to user
� Group of clients can achieve private

namespace

� Use custom cell database

22

AFS Security

� Client machine presents Kerberos ticket

� Allows arbitrary binding of (machine,user) to
(realm,principal)

� davide on a cs.cmu.edu machine can be
de0u@andrew.cmu.edu

� iff the password is known!

� Server checks against access control list

23

AFS ACLs

� Apply to directory, not to individual files
� ACL format

� de0u rlidwka
� davide@cs.cmu.edu rl
� de0u:friends rl

� Negative rights

� Disallow “joe rl” even though joe is in
de0u:friends

24

AFS ACLs

� AFS ACL semantics are not Unix semantics

� Some parts obeyed in a vague way
� Cache manager checks for files being executable,

writable

� Many differences
� Inherent/good: can name people in different

administrative domains
� “Just different”

� ACLs are per-directory, not per-file
� Different privileges: create, remove, lock

� Not exactly Unix / not tied to Unix

25

NFS protocol architecture

� root@client executes “mount filesystem” RPC

� returns “file handle” for root of remote file
system

� client RPC for each pathname component

� /usr/local/lib/emacs/foo.el in /usr/local file system
� h = lookup(root-handle, “lib”)
� h = lookup(h, “emacs”)
� h = lookup(h, “foo.el”)

� Allows disagreement over pathname syntax
� Look, Ma, no “/”!

26

NFS protocol architecture

� I/O RPCs are idempotent
� multiple repetitions have same effect as one
� lookup(h, “emacs”) generally returns same result

� read(file-handle, offset, length) � same bytes

� write(file-handle, offset, buffer, bytes) � “ok”

� RPCs do not create server-memory state

� no RPC calls for open()/close()
� write() succeeds (to disk), or fails, before RPC

completes

27

NFS file handles

� Goals

� Reasonable size
� Quickly map to file on server
� “Capability”

� Hard to forge, so possession serves as “proof”

� Implementation (inode #, inode generation #)

� inode # - small, fast for server to map onto data
� “inode generation #” - must match value stored

in inode
� “unguessably random” number chosen in create()

28

NFS Directory Operations

� Primary goal

� Insulate clients from server directory format
� Approach

� readdir(dir-handle, cookie, nbytes) returns list
� name, inode # (for display by ls -l), cookie

29

AFS protocol architecture

� Volume = miniature file system

� One user's files, project source tree, ...
� Unit of disk quota administration, backup
� Mount points are pointers to other volumes

� Client machine has Cell-Server Database

� /afs/andrew.cmu.edu is a cell
� protection server handles authentication
� volume location server maps volumes to file

servers

30

AFS protocol architecture

� Volume location is dynamic
� Moved between servers transparently to user

� Volumes may have multiple replicas
� Increase throughput, reliability
� Restricted to “read-only” volumes

� /usr/local/bin
� /afs/andrew.cmu.edu/usr

31

AFS Callbacks

� Observations

� Client disks can cache files indefinitely
� Even across reboots

� Many files nearly read-only
� Contacting server on each open() is wasteful

� Server issues callback promise
� “If this file changes in 15 minutes, I will tell you”

� Via callback break message

� 15 minutes of free open(), read() for that client
� More importantly, 15 minutes of peace for server

32

AFS file identifiers

� Volume number

� Each file lives in a volume
� Unlike NFS “server1's /usr0”

� File number

� inode # (as NFS)
� “Uniquifier”

� allows inodes to be re-used
� Similar to NFS file handle inode generation #s

33

AFS Directory Operations

� Primary goal

� Don't overload servers!
� Approach

� Server stores directory as hash table on disk
� Client fetches entire directory as if a file
� Client parses hash table

� Directory maps name to fid

� Client caches directory (indefinitely, across
reboots)

� Server load reduced

34

AFS access pattern

open(“/afs/cs.cmu.edu/service/systypes”)

� VFS layer hands off “/afs” to AFS client
module

� Client maps cs.cmu.edu to pt & vldb servers
� Client authenticates to pt server
� Client volume-locates root.cell volume
� Client fetches “/” directory
� Client fetches “service” directory
� Client fetches “systypes” file

35

AFS access pattern

open(“/afs/cs.cmu.edu/service/newCSDB”)

� VFS layer hands off “/afs” to AFS client module
� Client fetches “newCSDB” file

open(“/afs/cs.cmu.edu/service/systypes”)

� Assume
� File is in cache
� Server hasn't broken callback
� Callback hasn't expired

� Client can read file with no server interaction

36

AFS access pattern

� Data transfer is by chunks
� Minimally 64 KB
� May be whole-file

� Writeback cache

� Opposite of NFS “every write is sacred”
� Store chunk back to server

� When cache overflows
� On last user close()

37

AFS access pattern

� Is writeback crazy?

� Write conflicts “assumed rare”
� Who needs to see a half-written file?

38

NFS “rough edges”

� Locking

� Inherently stateful
� lock must persist across client calls

� lock(), read(), write(), unlock()

� “Separate service”
� Handled by same server
� Horrible things happen on server crash
� Horrible things happen on client crash

39

NFS “rough edges”

� Some operations not really idempotent

� unlink(file) returns “ok” once, then “no such file”
� server caches “a few” client requests

� Caching

� No real consistency guarantees
� Clients typically cache attributes, data “for a

while”
� No way to know when they're wrong

40

NFS “rough edges”

� Large NFS installations are brittle

� Everybody must agree on many mount points
� Hard to load-balance files among servers

� No volumes
� No atomic moves

� Cross-realm NFS access basically nonexistent

� No good way to map uid#47 from an unknown
host

41

AFS “rough edges”

� Locking

� Server refuses to keep a waiting-client list
� Client cache manager refuses to poll server
� Result

� Lock returns “locked” or “try again later”
� User program must invent polling strategy

� Chunk-based I/O

� No real consistency guarantees
� close() failures are surprising to many programs

42

AFS “rough edges”

� ACLs apply to directories
� “Makes sense” if files will inherit from directories

� Not always true

� Confuses users
� Directories inherit ACLs

� Easy to expose a whole tree accidentally
� What else to do?

� No good solution known
� DFS horror

43

AFS “rough edges”

� Small AFS installations are punitive

� Step 1: Install Kerberos
� 2-3 servers
� Inside locked boxes!

� Step 2: Install ~4 AFS servers (2 data, 2 pt/vldb)
� Step 3: Explain Kerberos to your users

� Ticket expiration!

� Step 4: Explain ACLs to your users

44

Summary - NFS

� Workgroup network file service
� Any Unix machine can be a server (easily)
� Machines can be both client & server

� My files on my disk, your files on your disk
� Everybody in group can access all files

� Serious trust, scaling problems
� “Stateless file server” model only partial

success

45

Summary – AFS

� Worldwide file system
� Good security, scaling
� Global namespace
� “Professional” server infrastructure per cell

� Don't try this at home
� Only ~180 AFS cells (basically static since 2002)

� 8 are cmu.edu, ~15 are in Pittsburgh

� “No write conflict” model only partial success

46

Further Reading

� NFS

� RFC 1094 for v2 (3/1989)
� RFC 1813 for v3 (6/1995)
� RFC 3530 for v4 (4/2003, not yet universally

available)

47

Further Reading

� AFS

� “The ITC Distributed File System: Principles and
Design”, Proceedings of the 10th ACM
Symposium on Operating System Principles,
Dec. 1985, pp. 35-50.

� “Scale and Performance in a Distributed File
System”, ACM Transactions on Computer
Systems, Vol. 6, No. 1, Feb. 1988, pp. 51-81.

� IBM AFS User Guide, version 36
� http://www.cs.cmu.edu/~help/afs/index.html

