15-410 "..."Windows NT is C2 Secure"..."

Security Overview Nov. 19, 2008

Dave Eckhardt
Roger Dannenberg

L34_Security 15-410, F'08

Synchronization

Reminder...

- Don't forget to read your partner's P3 code
 - Suggestion: read it, then meet with questions

P3 interview/feedback sessions

- Roughly 45 minutes
- Your reader will contact you soon to set up an appointment during the last week of classes

Synchronization

Today

Chapter 15, more or less

Next time

Fun stuff not in the text

Overview

Goals & Threats

Technologies

- Scanning
- Hashes
- Random numbers
- Private-key/symmetric cryptography
- Public-key/asymmetric cryptography
- The mysterious nonce

Next Time

- Applications
- Systems

U.S. DoD "Orange Book" Security Classifications

- D -try again
- C -authentication, controlled sharing
- B -per-object sensitivity labels, user clearances
- A -B-class system with formal spec, proofs

Sub-levels

C2 = C1 + ACLs, audit logs, anti-tamper OS, ...

"Windows NT is C2 secure"

Windows NT is C2 secure
Wimpy old Unix is only C1
Use Windows, it's secure!

Windows NT is C2 secure

Windows NT is C2 secure

Wimpy old Unix is only C1

Use Windows, it's secure!

- Melissa, Code Red, SQL Slammer, SoBig, ...
- What's wrong with this picture?

"Security Architecture" undermined by implementation (default login is superuser)

Physical security assumed in evaluation

- Locked rooms, floppy booting disabled
- In practice, isolate from Internet!

Goal: Authentication

Threat: impersonation

Goal: Secrecy

Threats: theft, eavesdropping, cipher breaking, ...

Goal: Integrity

Threat: cracking

Goal: Signature

Threats: impersonation, repudiation

...

Authentication

Visitor/caller is Alice

Threat: Impersonation

- Act/appear/behave like Alice
- Steal Alice's keys (or "keys")

Outcomes

- Maybe you can read Alice's secrets
- Maybe you can send Alice to jail

Secrecy

Only Bob (or "Bob") can read Bob's data

Difficult secrecy threats

- Break a cipher (see below)
- Compromise a system (see below)
- Or....

Eavesdropping –get data while it's unprotected!

- Wireless keyboard
- Keystroke logger
- TEMPEST

TEMPEST

Code name for electromagnetic security standard

The criteria document is classified

Problem

- Computers are radios
- Especially analog CRT monitors
 - ~150 MHz signal bandwidth ("dot clock")
 - Nice sharp sync pulses
- Surveillance van can read your screen from 100 feet

Integrity

- Only authorized personnel can add bugs to a system
- Or edit bank account balances
- Or edit high school grades

Threats

- Hijacking authorized accounts (impersonation)
- Bypassing authorization checks
 - Boot system in "administrator mode"?
 - Boot some other OS on the machine?
- Modifying hardware

Signature

"Pay Bob \$5 for his program" was uttered by Alice

Threats

- Alice repudiates message (after receiving program)
- Charlie signs "Pay Charlie \$500 for his program"
 - ... with Bob's signature

Anonymous communication

- "Whistle blowers"
- Secret agents

Threat

- "Traffic analysis"
 - Observe repeated "coincidence"
 - » Node 11 sends a message, Nodes 1-10 attack
 - Which node is a good target?

Availability

- Web server is available to corporate customers
- Mailbox contains interesting mail

Threat

- DoS Denial of Service
 - Flood server with bogus data
 - "Buries" important data
 - SYN flooding, connection resetting

15-410, F'08

Another DoS Attack

Automated Flight Data Processing System

- Transfers flight arrival/departure data
 - ...between radar tower in Elgin, IL (where's that?)
 - ...and tower at O'Hare International

Fallback system

paper, pencil, telephone

Another DoS Attack

Automated Flight Data Processing System

- Transfers flight arrival/departure data
 - ...between radar tower in Elgin, IL (where's that?)
 - ...and tower at O'Hare International

Fallback system

paper, pencil, telephone

Uh-oh...

- Chief engineer quit
 - after deleting sole copy of source code

Now What?

Police raided his house

Recovered code!

- Encrypted
 - Cracked –after 6 months

Summary

http://archives.californiaaviation.org/airport/msg02974.html

Lesson?

People matter...

Malicious Programs ("malware")

Buffer overflow

Virus/worm

Trojan horse

Trapdoor

15-410, F'08

Buffer overflow

GET

Virus/Worm

Virus

- Program which cannot replicate itself
- Embedded in other programs, runs when they do
- Embeds self in other programs

Worm

- Breaks into remote machine
- Launches remote copy
- May not reside permanently on disk

Trojan, Trap Door

Trojan Horse

- Program with two purposes
- Advertised –"Here is the new security update!"
- Actual –Here is a hard-disk-wipe program!

Trap door

login: anything

Password: My hovercraft is full of eels!

#insert <reflections_on_trusting_trust>

Technologies

Scanning/intrusion detection/auditing

Hashing

Random numbers

Encryption (1-time, private, public)

The mysterious nonce

Scanning

Concept

- Check your system for vulnerabilities
 - Before somebody else does!

Details

- Password scan
- Scan for privileged programs, extra programs
- Check for dangerous file permissions
- Check that program, config files have correct contents
- Are mysterious programs running?

Intrusion Detection

Concept

- Monitor system in secure state
- Summarize typical behavior
- Watch for disturbing variation

Examples

- Sudden off-site traffic to/from a machine
- Change in system call mix
 - Gee, my web server doesn't usually exec("/bin/sh -i")...

Issues –false positive, false negative

Auditing

Concept

- Estimate damage
 - What was taken?
- How to fix system?

Approach

- Log system actions off-board
 - paper printer
 - disk with hardware roll-back

Boring but useful when you're in trouble...

Hashing

"One-way function"

- $h_1 = f(message_1)$
- Given h₁ "infeasible" to find message₁
 - Not so hard –"parity sum" is a one-way function

Hashing

"One-way function"

- $h_1 = f(message_1)$
- Given h₁ "infeasible" to find message₁
 - Not so hard –"parity sum" is a one-way function

"Collision resistant"

- Given h₁, "infeasible" to find message₂ also hashing to h₁
- "Infeasible" to find any two m₁, m₂ hashing to h_x

Use

- Here is the MD5 hash of the OpenBSD CD-ROM image
 - And here is the list of mirror sites
- "Infeasible" to find/construct malware with that hash

Hashing Issues

Verify data?

- Compute hash function on data you have
- Compare to published official output of hash function run on the official data

Say, what is the "official version hash"?

- Easy if you're in a room with the OpenBSD release coordinator
- Otherwise, not easy
- Preview of the key distribution problem

Fate of Secure Hashes

Secure hash functions don't last very long

- Some are "found weak" several years after proposal
- NIST SHA (now known as SHA-0) withdrawn almost immediately

Status (Spring 2004)

- MD5 should be removed from service
- Code under development should use SHA-1

Fate of Secure Hashes

Status (Spring 2004)

- MD5 should be removed from service
- New projects should use SHA-1

Status (Cryto2004, August)

- MD5 is "blown"
 - Team of Chinese researchers has a method to find collisions
 - » MD4, RIPEMD, HAVAL, MD5...uh-oh...
- SHA-1 is "on life support"
 - Collisions have been found in SHA-0
 - Collisions have been found in "reduced round" SHA-1
 - Collisions can be found in 2⁶⁹ attempts (<< 2⁸⁰)
- Verdict: "schedule SHA-1 for replacement" -- with ...?

Fate of Secure Hashes

Status (Fall 2008)

- SHA-1 is somewhat replaced by the "SHA-2 family" (SHA-224, SHA-256, SHA-384, SHA-512)
 - The "SHA-2 family" is basically SHA-1 with more bits
- NIST is holding a multi-year "Advanced Hash Standard" competition
 - Submissions were due October 31 (no late days, sorry!)
 - Expected announcement of winner: 2012Q2
 - http://csrc.nist.gov/groups/ST/hash/sha-3/

"Random" Numbers

Three concepts

- Pseudo-random number generator (PRNG)
 - Next = (Previous*L+I) mod M
 - srand()/random()
 - Next "looks different" than Previous
 - Behaves the same way every time not random at all
- Kind-of-random stuff
 - srand(get_timer());
 - Ok for games (where money isn't involved)
- Entropy pool
 - Genuinely random bits

Entropy Pool

Goal (for security) is unguessability

aka unpredictability, true randomness, entropy

Why "kind-of" doesn't work

- Netscape seeded SSL session key generator with
 - getpid(), getppid(), time of day
 - Time is a globally-known value
 - Process IDs occupy a small space
 - » ...especially if you are on the target's machine!

Some things are genuinely random

- Which microsecond does the user press a key in?
- "Entropy Pool" is a queue of those events

Encryption

Concept

```
ciphertext = E(text, K<sub>1</sub>)
text = D(ciphertext, K<sub>2</sub>)
```

Algorithm E(),D()

- Should be public
 - Best known way to achieve strength

Keys

One (or maybe both) kept secret

Encryption: One-Time Pad

Key

- Truly random byte string
 - RKNYQTIDCEMWX...

Algorithm

- E(): XOR one key byte, one message byte
 - M ⊕ R = 1F
 - MESSAGE⊕RKNYQTI = 1F0E1D0A10130C0A
- D(): same process –using the same random string
 - Recall
 - » random ⊕ random = 0
 - » msg ⊕ 0 = msg
 - So (msg ⊕ random) ⊕ random = msg

One-Time Pad

Pad must be as long as message

Must be delivered securely

Never re-use pads!!

- (m1 ⊕ pad) ⊕ (m2 ⊕ pad) = (m1 ⊕ m2)
- Computationally very easy to see if a bit stream is text ⊕'d with other text

Private-Key Cryptography

Concept: symmetric cipher

```
ciphertext = E(text, Key)
text = E(ciphertext, Key)
```

Good

Fast, intuitive (password-like), small keys

Bad

Must share a key (privately!) before talking

Applications

Bank ATM links, secure telephones

Public-Key Cryptography

Concept: asymmetric cipher (aka "magic")

```
ciphertext = E(text, Key1)
text = D(ciphertext, Key2)
```

Keys are different

- Generate key pair
 - Two very large bit strings
 - » Related to each other mathematically
 - » Work together
- Publish "public key"
- Keep "private key" very secret

Public-Key Encryption

Sending secret mail

- Locate receiver's public key
- Encrypt mail with it
- Nobody can read it
 - Not even you!

Receiving secret mail

- Decrypt mail with your private key
 - No matter who sent it

Public-Key Signatures

Write a document

Encrypt it with your private key

Nobody else can do that

Transmit plaintext and ciphertext of document

Anybody can decrypt with your public key

- If they match, the sender knew your private key
 - ...sender was you, more or less

(really: sign msg with E(hash(msg), K_p))

Public Key Cryptography

Good

No need to privately exchange keys

Bad

- Algorithms are slower than private-key
- Must trust key directory

Applications

Secret mail, signatures

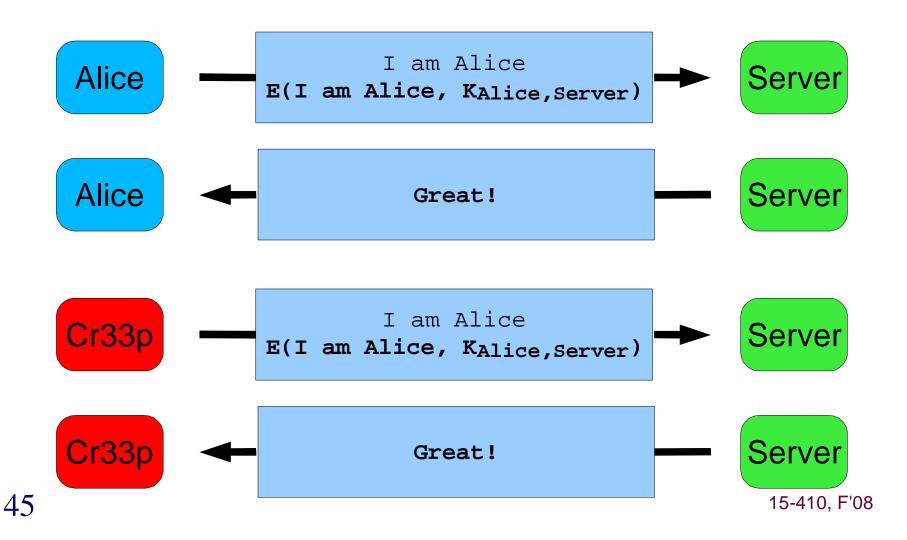
Comparison

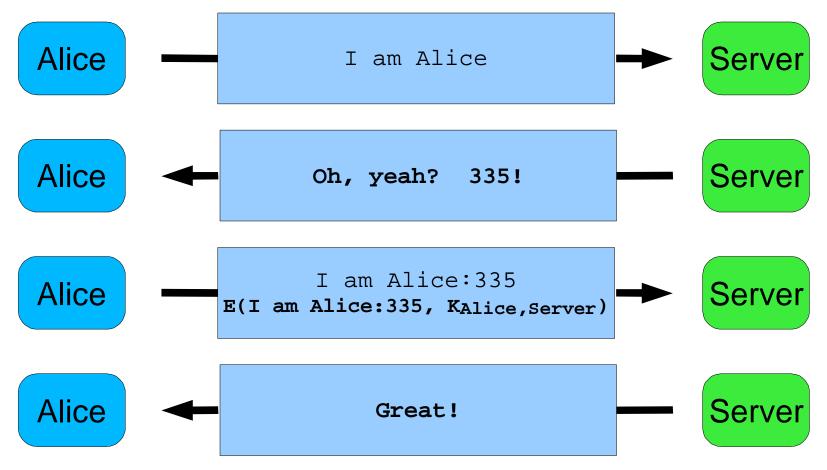
Private-key algorithms

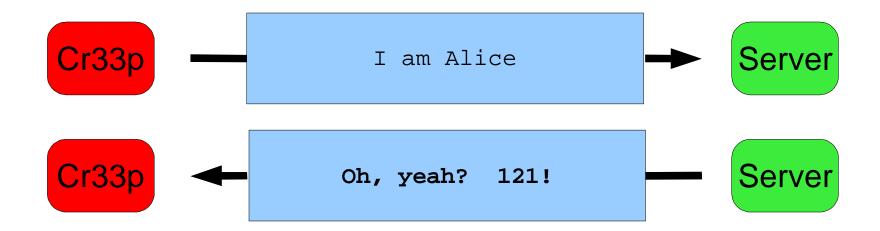
- Fast crypto, small keys
- Secret-key-distribution problem

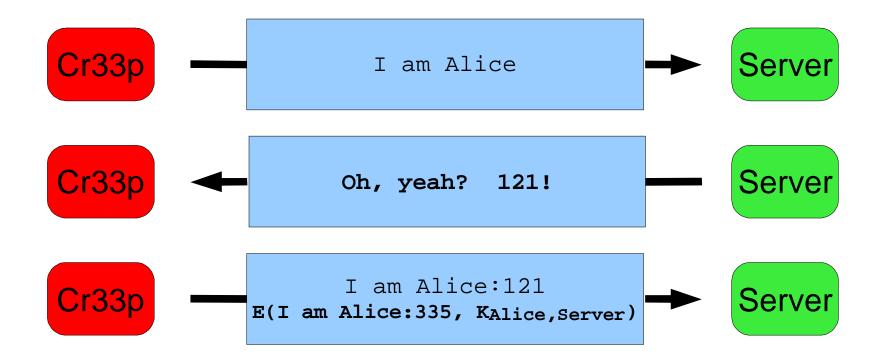
Public-key algorithms

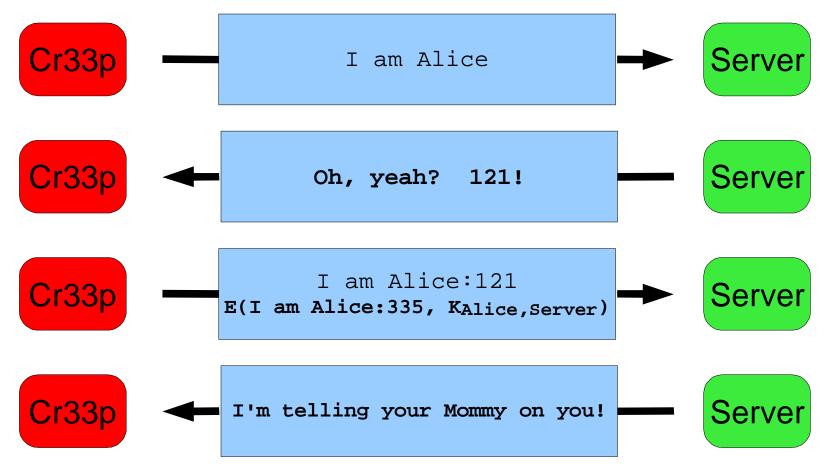
- "Telephone directory" key distribution
- Slow crypto, keys too large to memorize


Can we get the best of both?


Next time!


Secure Network Login




Secure Network Login –Uh-oh...

Summary

Many threats

Many techniques

"The devil is in the details"

Just because it "works" doesn't mean it's right!

Open algorithms, open source

Further Reading

Status of secure hash functions

MD5 is really dead (fast exploit code available)

http://www.schneier.com/blog/archives/2005/06/more_md5_collis.html http://www.schneier.com/blog/archives/2005/03/more_hash_funct.html http://cryptography.hyperlink.cz/md5/MD5_collisions.pdf

SHA-1 has been seriously wounded

http://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html http://www.schneier.com/blog/archives/2005/02/sha1_broken.html http://www.schneier.com/blog/archives/2005/08/new_cryptanalyt.html Xiaoyun Wang's page

» http://www.infosec.sdu.edu.cn/people/wangxiaoyun.htm

Further Reading

Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations

- Markus Kuhn, Ross Anderson
- http://www.cl.cam.ac.uk/~mgk25/ih98-tempest.pdf

Optical Time-Domain Eavesdropping Risks of CRT Displays

- Markus Kuhn
- http://www.cl.cam.ac.uk/~mgk25/emsec/optical-faq.html

Keyboard Acoustic Emanations Revisited

- Zhuang, Zhou, Tygar
- http://www.cs.berkeley.edu/~tygar/papers/Keyboard_Acoustic_Emanations_Revisited/ccs.pdf

Further Reading

Reflections on Trusting Trust

- Ken Thompson
- http://www.acm.org/classics/sep96

Netscape random-number oops

http://www.cs.berkeley.edu/~daw/netscape-randomness.html

Lava-lamp random numbers

http://www.LavaRnd.org/

How to destroy somebody who uses a hash table

http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_UsenixSec2003/