
15-410, F’081

Security Applications
Nov. 21, 2008

Dave EckhardtDave Eckhardt

Roger DannenbergRoger Dannenberg
PGP diagram shamelessly stolen from 15-441

SecurID picture clipped from rsa.com

L35_Security

15-410
“...What about gummy bears?...”

15-410, F’082

Synchronization

P3extra and P4 hand-in directories have been create dP3extra and P4 hand-in directories have been create d
� Please check IMMEDIATELY to make sure yours is there
� Please make sure you can store files there
� Check disk space

15-410, F’083

Synchronization

TonightTonight
� Computer Club/KGB “retro computer game” night
� 19:00
� Wean 5302/5304/5310/5312/5320/5328
� Featured attractions

� Amiga A1200, Sinclair ZX Spectrum, Atari 800XL,
Commodore 64, Commodore 128, Mac Quadra, MS-DOS PC,
NES, SNES

DisclaimerDisclaimer
� “Business attire” not recommended

15-410, F’084

Outline

TodayToday
� Warm-up: Password file
� One-time passwords
� Review: private-key, public-key crypto
� Kerberos
� SSL
� PGP
� Biometrics

DisclaimerDisclaimer
� Presentations will be key ideas, not exact protocol s

� “Protocols discussed in lecture are larger than the y appear”

15-410, F’085

Password File

GoalGoal
� User memorizes a small key
� User presents key, machine verifies it

Wrong approachWrong approach
� Store keys (passwords) in file
� Why is this bad? What is at risk?

alice : Whimsy33Fish/
bob : secret
chas : secret

15-410, F’086

Hashed Password File

BetterBetter
� Store hash(key)

� hash(“Whimsy33Fish/”) � X93f3ZaWhT
� hash(“secret”) � fg8ReCFySk

� User presents key
� Login computes hash(key) , compares to file

alice : X93f3ZaWhT
bob : fg8ReCFySk
chas : fg8ReCFySk

15-410, F’087

Hashed Password File

Password file no longer must be secretPassword file no longer must be secret
� It doesn't contain keys, only key hashes

Still vulnerable to Still vulnerable to dictionarydictionary attack attack
� Cracker computes hash(“a”) , hash(“b”) , stores reverse

� unhash(“54GtYuREbk”) � “a”
� unhash(“PoLka67vab”) � “b”

� Once computed, hash � password list attacks many users
� unhash(“ fg8ReCFySk ”) � “secret” hits Bob and Chas
� Note: cracker may quit before hash(“ Whimsy33Fish/ ”)

Hashed file is “arguably less wrong”Hashed file is “arguably less wrong”
� Can we make the cracker's job even harder?

15-410, F’088

Salted Hashed Password File

Choose random number when user sets passwordChoose random number when user sets password
� Store #, hash(#,key)

� hash(“Xz Whimsy33Fish/”) � uiR34ExWmT
� hash(“p0 secret”) � 998ueTRvMx
� hash(“9Q secret”) � opTkr7Sfh3

User presents keyUser presents key
� Login looks up user, retrieves # and hash(#,key)

� Login computes hash(#,typed-key) , compares to file

alice : Xz : uiR34ExWmT
bob : p0 : 998ueTRvMx
chas : 9Q : opTkr7Sfh3

15-410, F’089

Salted Hashed Password File

Evaluation of “salt” extensionEvaluation of “salt” extension
� Zero extra work for user

� User still remembers just the password
� Salt is invisible

� Trivial extra space & work for login program
� Store a few more bytes
� Hash a slightly-longer string

� Pre-computed dictionary must be much larger
� Without salt: cracker must hash all “words”
� With salt: cracker must hash (all “words”) X (all # 's)

» 2 random salt bytes [A-Za-z0-9] increases work 3844 -fold
» Linear work for target, exponential work for cracke r!

Can we do even better?Can we do even better?

15-410, F’0810

Shadow Salted Hashed Password
File
Protect the password file after allProtect the password file after all

““ Defense in depth” - Cracker mustDefense in depth” - Cracker must
� Either

� Compute enormous all-word/all-salt dictionary
� Break system security to get hashed password file
� Scan through enormous all-word/all-salt dictionary

� Or
� Break system security to get hashed password file
� Run all-word attack on each user in password file

There are probably easier ways into the systemThere are probably easier ways into the system
� ...such as bribing a user!

15-410, F’0811

One-time passwords

What if somebody What if somebody doesdoes eavesdrop? eavesdrop?
� Can they undetectably impersonate you forever?

““ One-time passwords”One-time passwords”
� System (and user!) store key list

� User presents head of list, system verifies
� User and system both destroy key at head of list
� Eavesdropper learns nothing with a future use

15-410, F’0812

One-time passwords

What if somebody What if somebody doesdoes eavesdrop? eavesdrop?
� Can they undetectably impersonate you forever?

““ One-time passwords”One-time passwords”
� System (and user!) store key list

� User presents head of list, system verifies
� User and system both destroy key at head of list
� Eavesdropper learns nothing with a future use

Alternate approachAlternate approach
� Portable cryptographic clock

� Sealed box which displays E(time, key)
� Only box & server know the key
� User types in displayed value as a password

15-410, F’0813

Cryptography on One Slide

Symmetric / private-key cipherSymmetric / private-key cipher
ciphertext = E(cleartext , Key)

cleartext = E(ciphertext , Key)

DES, RC4, IDEA, Threefish

Asymmetric / public-key cipher (aka “magic”)Asymmetric / public-key cipher (aka “magic”)
ciphertext = E(cleartext , Key1)

cleartext = D(ciphertext , Key2)

RSA, ElGamal

15-410, F’0814

Reminder: Public Key Signatures

Write a documentWrite a document

Encrypt it with your private keyEncrypt it with your private key
� Nobody else can do that

Transmit plaintext Transmit plaintext and ciphertextand ciphertext of document of document

Anybody can decrypt with your public keyAnybody can decrypt with your public key
� If they match, the sender knew your private key

� ...sender was you, more or less

ActuallyActually
� send E(hash(msg), K private)

15-410, F’0815

Comparison

Private-key algorithmsPrivate-key algorithms
� Fast crypto, small keys
� Secret-key-distribution problem

Public-key algorithmsPublic-key algorithms
� “Telephone directory” key distribution
� Slow crypto, keys too large to memorize

Can we get the best of both?Can we get the best of both?

15-410, F’0816

Kerberos

GoalsGoals
� Use fast private-key encryption
� Require users to remember one small key
� Authenticate & encrypt for N users, M servers

ProblemProblem
� Private-key encryption requires shared key to

communicate
� Can't deploy & use system with NxM keys!

IntuitionIntuition
� Trusted third party knows single key of every user, server
� Distributes temporary keys to (user,server) on dema nd

15-410, F’0817

Not Really Kerberos

Authenticating to a “server”Authenticating to a “server”
� Client = de0u, server = “ANDREW.CMU.EDU AFS cell”

Client contacts server with a Client contacts server with a ticketticket
� Specifies identity of holder

� Server will use identity for access control checks
� Specifies ephemeral session key for encryption

� Roll dice to generate a key for today, then throw i t away
� Server will decrypt messages from client using this key
� Also provides authentication – only client can encr ypt with

that key
� Specifies time of issuance

� Ticket “times out”
� Client must get another one – re-prove it knows its key

15-410, F’0818

Not Really Kerberos

Ticket formatTicket format
� Ticket={client,time,K session }Ks

� {client, time, session key} DES-encrypted with serv er's key

ObservationsObservations
� Server knows K s, can decrypt & understand the ticket

� Clients can't fake tickets, since they don't know K s

� Session key is provided to server via encrypted cha nnel
� Eavesdroppers can't learn session key
� Client-server communication using K s will be secure

How do clients get tickets?How do clients get tickets?
� Only server & “Kerberos Distribution Center” know K s...

15-410, F’0819

Not Really Kerberos

Client sends to Key Distribution CenterClient sends to Key Distribution Center
� “I want a ticket for the printing service”
� {client, server, time}

KDC sends client two thingsKDC sends client two things
� {Ksession ,server,time}K c

� Client can decrypt this to learn session key
� Client knows when the ticket will expire

� Ticket={client,time,K session }Ks
� Client cannot decrypt ticket
� Client can transmit ticket to server as opaque data

15-410, F’0820

Not Really Kerberos

Results (client)Results (client)
� Client has session key for encryption

� Can trust that only desired server knows it

Results (server)Results (server)
� Server knows identity of client
� Server knows how long to trust that identity
� Server has session key for encryption

� Data which decrypt meaningfully must be from that c lient

15-410, F’0821

Not Really Kerberos

Results (architecture)Results (architecture)
� N users, M servers
� System has N+M keys

� Like a public-key crypto system
� But fast private-key ciphers are used

� Each entity remembers only one (small) key
� “Single-sign on”: one password per user

Any weakness?Any weakness?

15-410, F’0822

Securing a Kerberos Realm

KDC (Kerberos Distribution Center)KDC (Kerberos Distribution Center)
� Single point of failure

� If it's down, clients can't get tickets to contact more
servers...

» Ok, fine, multiple instances of server (master/sla ve)

15-410, F’0823

Securing a Kerberos Realm

KDC (Kerberos Distribution Center)KDC (Kerberos Distribution Center)
� Single point of failure

� If it's down, clients can't get tickets to contact more
servers...

» Ok, fine, multiple instances of server (master/sla ve)
� Each server knows all keys in system

� Single point of compromise
» Deployed in locked boxes in (multiple) machine rooms

� Very delicate to construct & deploy
� Turn off most Internet services
� Maybe boot from read-only media
� Maybe booting requires entry of master password
� Unwise to back up key database to “shelf full of ta pes”

15-410, F’0824

SSL

GoalsGoals
� Fast, secure communication
� Any client can contact any server on planet

ProblemsProblems
� There is no single trusted key server for the whole planet

� Can't use Kerberos approach
� Solution: public-key cryptography?

15-410, F’0825

SSL

GoalsGoals
� Fast, secure communication
� Any client can contact any server on planet

ProblemsProblems
� There is no single trusted key server for the whole planet

� Can't use Kerberos approach
� Solution: public-key cryptography?

� Interesting issue: public key algorithms are slow
� Huge problem: there is no global public-key directo ry

15-410, F’0826

SSL Approach (“Not exactly”)

ApproachApproach
� Use private-key/symmetric encryption for speed
� Swap symmetric session keys via public-key crypto

� Temporary random session keys similar to Kerberos

StepsSteps
� Client looks up server's public key in global direc tory
� Client generates random DES session key
� Client encrypts session key using server's RSA publ ic key
� Now client & server both know session key
� Client knows it is talking to the desired server

� After all, nobody else can do the decrypt...

15-410, F’0827

SSL Approach (“Not exactly”)

ProblemProblem
� There is no global key directory
� Would be a single point of compromise

� False server keys enable server spoofing
� If you had a copy of one it would be out of date

� Some server would be deployed during your download

ApproachApproach
� Replace global directory with chain of trust
� Servers present their own keys directly to clients
� Keys are signed by “well-known” certifiers

15-410, F’0828

Not SSL

Server “certificate”Server “certificate”
� “To whom it may concern, whoever can decrypt

messages encrypted with public key
AAFD01234DE34BEEF997C is www.cmu.edu”

Protocol operationProtocol operation
� Client calls server, requests certificate
� Server sends certificate
� Client generates private-key session key
� Client sends {K session }K server to server

� If server can decrypt and use K session , it must be legit

Any problem...?Any problem...?

15-410, F’0829

SSL Certificates

How did we know to trust that certificate?How did we know to trust that certificate?

Certificates are signed by Certificates are signed by certificate authoritiescertificate authorities
� “Whoever can decrypt messages encrypted with public

key AAFD01234DE34BEEF997C is www.cmu.edu
� Signed, Baltimore CyberTrust

» SHA-1 hash of statement: 904ffa3bb39348aas
» Signature of hash: 433432af33551a343c143143fd11

Certificate verificationCertificate verification
� Compute SHA-1 hash of server's key statement
� Look up public key of Baltimore CyberTrust in globa l

directory...oops!

15-410, F’0830

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
� Certificates are signed by certificate authorities
� Browser vendor ships CA public keys in browser

� Check your browser's security settings, see who you trust!
� “Chain of trust”

� Mozilla.org certifies Baltimore Cybertrust
� Baltimore Cybertrust certifies, ex., www.cmu.edu

15-410, F’0831

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
� Certificates are signed by certificate authorities
� Browser vendor ships CA public keys in browser

� Check your browser's security settings, see who you trust!
� “Chain of trust”

� Mozilla.org certifies Baltimore Cybertrust
� Baltimore Cybertrust certifies, ex., www.cmu.edu
� Say, who actually certifies www.cmu.edu?

15-410, F’0832

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
� Certificates are signed by certificate authorities
� Browser vendor ships CA public keys in browser

� Check your browser's security settings, see who you trust!
� “Chain of trust”

� Mozilla.org certifies Baltimore Cybertrust
� Baltimore Cybertrust certifies, ex., www.cmu.edu
� Say, who actually certifies www.cmu.edu?

» As of 2008-11-21: “Comodo Ltd.” d/b/a “The
USERTRUST Network”

» You've heard of them, right? Household name?

15-410, F’0833

SSL Certificates

How did we know to trust the server's certificate?How did we know to trust the server's certificate?
� Certificates signed by certificate authorities
� Browser vendor ships CA public keys in browser

� Check your browser's security settings, see who you trust!
� “Chain of trust”

� Mozilla.org certifies Baltimore Cybertrust
� Baltimore Cybertrust certifies, ex., www.cmu.edu
� Say, who actually certifies www.cmu.edu?

» As of 2008-11-21: “Comodo Ltd.” d/b/a “The
USERTRUST Network”

» You've heard of them, right? Household name?
» How about “NetLock Halozatbiztonsagi Kft.”???

15-410, F’0834

PGP

GoalGoal
� “Pretty Good Privacy” for the masses
� Without depending on a central authority

ApproachApproach
� Users generate public-key key pairs
� Public keys stored “on the web” (pgpkeys.mit.edu)

� Global directory (untrusted, like a whiteboard)
� We have covered how to send/receive/sign secret e-m ail

ProblemProblem
� How do I trust a public key I get from “on the web”?

15-410, F’0835

“On the Web”

PGP key server protocolPGP key server protocol
� ???: Here is de0u@andrew.cmu.edu's latest public ke y!

� Server: “Great, I'll provide it when anybody asks!”
� Alice: What is de0u@andrew.cmu.edu's public key?

� Server: Here are 8 possibilities...you decide which to trust!

How do I How do I trusttrust a public key I get “from the web”? a public key I get “from the web”?
� “Certificate Authority” approach has issues

� They typically charge $50-$1000 per certificate per year
� They are businesses...governments can lean on them

» ...to present false keys...
» ...to delete your key from their directory...
» ...to refuse to sign your key...

15-410, F’0836

PGP

““ WebWeb of trust” of trust”
� Dave and Roger swap public keys (“key-signing party ”)
� Roger signs Dave's public key

� “937022D7 is the fingerprint of de0u@andrew.cmu.edu 's
key” -- sincerely, 77432900

� Publishes signature on one or more web servers
� Roger and Tunji swap public keys (at lunch)

Using the web of trustUsing the web of trust
� Tunji fetches Dave's public key from the web

� Verifies Roger's signature on it
� Tunji can safely send secret mail to Dave
� Tunji can verify digital signatures from Dave

15-410, F’0837

PGP “key rings”

Private key ringPrivate key ring
� All of your private keys
� Each encrypted with a “pass phrase”

� Should be longer & more random than a password
� If your private keys leak out, you can't easily cha nge them

Public key ringPublic key ring
� Public keys of various people

� Each has one or more signatures
� Some are signed by you – your PGP will use without

complaint

15-410, F’0838

PGP Messages

Message goalsMessage goals
� Decryptable by multiple people (recipients of an e- mail)
� Large message bodies decryptable quickly
� Message size not proportional to number of receiver s

Message structureMessage structure
� One message body, encrypted with a symmetric cipher

� Using a random “session” key
� N key packets

� Session key public-key encrypted with one recipient 's key

15-410, F’0839

Not PGP

SA(H(M))

EK(M, SA(H(M)))

Alice

EB(K), EK(M, SA(H(M)))

K

VA(SA(H(M)))

M

Bob

DB(EB(K)) DK(EK(M, SA(H(M))))

K SA(H(M))

H(M)

Note: on this slide, EK(a, b) means ...“a and b”...with K
(Notation closer to textbook's than to mine)

15-410, F’0840

Biometrics

ConceptConcept
� Tie authorization to who you are

� Not what you know – can be copied
� Hard to impersonate a retina

� Or a fingerprint

15-410, F’0841

Biometrics

ConceptConcept
� Tie authorization to who you are

� Not what you know – can be copied
� Hard to impersonate a retina

� Or a fingerprint

Right?Right?

15-410, F’0842

Biometrics

ConceptConcept
� Tie authorization to who you are

� Not what you know – can be copied
� Hard to impersonate a retina

� Or a fingerprint

Right?Right?
� What about gummy bears?

15-410, F’0843

Biometrics

ConceptConcept
� Tie authorization to who you are

� Not what you know – can be copied
� Hard to impersonate a retina

� Or a fingerprint

Right?Right?
� What about gummy bears?
� What about carjackers?

15-410, F’0844

Summary

Many threatsMany threats

Many techniquesMany techniques

““ The devil is in the details”The devil is in the details”

Just because it “works” doesn't mean it's right!Just because it “works” doesn't mean it's right!

Open algorithms, open sourceOpen algorithms, open source

15-410, F’0845

Further Reading

Kerberos: An Authentication Service for Computer Kerberos: An Authentication Service for Computer
NetworksNetworks
� B. Clifford Neuman, Theodore Ts'o
� USC/ISI Technical Report ISI/RS-94-399

Impact of Artificial “Gummy” Fingers on Fingerprint Impact of Artificial “Gummy” Fingers on Fingerprint
SystemsSystems
� Matsumoto et al.
� http://cryptome.org/gummy.htm

Amputation hazards of biometricsAmputation hazards of biometrics
� http://www.theregister.co.uk/2005/04/04/fingerprint _merc_chop/

15-410, F’0846

Further Reading

PGP PathfinderPGP Pathfinder
� http://pgp.cs.uu.nl/paths/3970227D/to/5B0358A2.html

