
15-410, F’04- 1 -

Exam #1
Oct. 25, 2004

Dave EckhardtDave Eckhardt

L21_Exam1

15-410
“...What does BSS stand for, anyway?...”

15-410, F’04- 2 -

Synchronization

Final Exam list postedFinal Exam list posted

� You must notify us of conflicts in a timely fashion

Checkpoint 2 – Wednesday, in clusterCheckpoint 2 – Wednesday, in cluster

Book report topic chosen? Great for airplane time...Book report topic chosen? Great for airplane time...

Upcoming eventsUpcoming events

� 15-412

� Summer internship with SCS Facilities?

15-410, F’04- 3 -

A Word on the Final Exam

DisclaimerDisclaimer

� Past performance is not a guarantee of future results

The course will changeThe course will change

� Up to now: “basics”

� What you need for Project 3

� Coming: advanced topics

� Design issues

� Things you won't experience via implemention

Examination will change to matchExamination will change to match

� More design questions

� Some things you won't have implemented

15-410, F’04- 4 -

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, F’04- 5 -

Q1 – Definitions (graded gently)

BSSBSS

� Blank storage space?

� Blank static storage?

� Block started by symbol

� According to Wikipedia
» Directive for IBM 704 assembler (1950's)

� Where all the zeroes go when you erase the blackboard

inb()inb()

� Is not a system call

trap frametrap frame

� Execution state the CPU saves on interrupt/exception/trap

15-410, F’04- 6 -

Q2 – Interrupt Handling

The “1024 registers problem”The “1024 registers problem”

� Can't afford to save 1024 registers millions of times/sec.

SolutionSolution

� Ok, don't save all the registers!

� Save the ones you'll use while running the interrupt
handler.

15-410, F’04- 7 -

Q2 – Interrupt Handling

Second problemSecond problem

� How do I know which registers the interrupt handler will
use?

SolutionsSolutions

� Write whole interrupt handler in assembly language
(urgh).

� Special compiler flags

� While compiling foo.c, use only registers 0..16
» Wrapper can save and restore only those 16

� Treat all registers as callee-save
» Maybe less efficient, maybe doesn't matter

15-410, F’04- 8 -

Q3: Implicit Thread Exit
int main() {

 void *status;

 thr_init(16*1024);

 thr_join(

 thr_create(foo, (void *) 0),

 NULL, &status);

 thr_exit(status);

}

What if it said “ return(status)” instead?What if it said “ return(status)” instead?

15-410, F’04- 9 -

Problem: return(s) means different thingsProblem: return(s) means different things

� Random procedure: return to caller

� main(), without threads: exit(s)

� main(), with threads: thr_exit(s)

How is “exit()” case handled?How is “exit()” case handled?

� _main(), which calls exit(main(argc, argv));

How can we extend this approach?How can we extend this approach?

� _main() could do something different

 s = main(argc, argv);
 if (thr_init_happened) thr_exit(s);
 else exit(s);

Q3: Implicit Thread Exit

15-410, F’04- 10 -

Other approachesOther approaches

� Leave _main() alone but change exit() wrapper

� Asking thr_init() to patch the stack

� ...so main() returns to something_special() instead of to _main()

Stack patchingStack patching

� Issue: how to locate main()'s return address on stack?

� One approach: know start of main(), length of main()

� Issue: can not set main()'s return address to thr_exit()...

� Where does thr_exit() look for status value?

Q3: Implicit Thread Exit

15-410, F’04- 11 -

Q4: Deadlock
This is a deadlock questionThis is a deadlock question

� Lots of systems contain deadlock

� Deadlock is hard to deal with

� Usually can't “define it away”

� If you try, you probably end up with starvation instead

� There is often no really satisfying solution

Should be Should be easyeasy to see the deadlock in this problem to see the deadlock in this problem

� CD burners are inherently exclusive-access

� Preempting a CD burner breaks the product

� Device driver won't let you do that, so non-preemption is natural

� Loop around alloc_drive(BURNER) is exactly hold&wait

� Application wants any burner, so you get cycles

15-410, F’04- 12 -

Q4: Deadlock
ApproachesApproaches

� Prevention

� Banning mutual exclusion or non-preemption isn't really feasible

� Banning hold&wait is possible
» Popular: allocate all burners at once

• Also popular: starving large requests
• There is an inherent tension here

» Popular: allocate as many burners as currently available
• Problem: burning 100 copies 1-by-1 is prohibitive
• Note: that is not “high throughput”!

� Banning cycles is odd...
» Result: given thread can allocate only random subset of

drives
» Easy to approximate 1-by-1...

15-410, F’04- 13 -

Q4: Deadlock
ApproachesApproaches

� Avoidance

� Natural

� Need to watch out for starvation/inefficiency here too

� Detection/recovery

� Rebooting the machine means a machine full of bad discs...

SummarySummary

� “Job scheduling” is hard

� Throughput vs. starvation is often an issue

� Real problems often contain painful messy issues

� Can't find perfect solution if there isn't one.

15-410, F’04- 14 -

Q5: mutex_unlock()
void mutex_lock(mutex_t *m) {

 while (xchg(&m->status, LOCKED) !=
UNLOCKED)

 yield(m->owner);

 m->owner = gettid();

}

15-410, F’04- 15 -

Q5: mutex_unlock()
void mutex_unlock_one(mutex_t *m) {

 m->owner = -1;

 m->status = UNLOCKED;

}

void mutex_unlock_two(mutex_t *m) {

 m->status = UNLOCKED;

 m->owner = -1;

}

What is desirable about #2?What is desirable about #2?

Why is #2 subtly but horribly wrong?Why is #2 subtly but horribly wrong?

15-410, F’04- 16 -

Q5: mutex_unlock()
void mutex_unlock_one(mutex_t *m) {

 m->owner = -1;

 m->status = UNLOCKED;

}

void mutex_unlock_three(mutex_t *m) {

 m->owner = -1;

 m->status = UNLOCKED;

 yield(-1);

}

What desirable feature does the yield() add to mutexes?What desirable feature does the yield() add to mutexes?

What assumption argues the other way?What assumption argues the other way?

15-410, F’04- 17 -

Summary
90% = 67.590% = 67.5 7 students 7 students

80% = 60.080% = 60.0 28 students28 students

70% = 52.570% = 52.5 13 students13 students

60%60% 8 students 8 students

<60%<60% 9 students 9 students

