
15-410, S’04- 1 -

Exam #1
Feb. 27, 2004

Dave EckhardtDave Eckhardt

Bruce MaggsBruce Maggs

L18_Exam1

15-410
“...What does IRET do, anyway?...”

15-410, S’04- 2 -

Synchronization

Final Exam list postedFinal Exam list posted
� You must notify us of conflicts in a timely fashion

P3 milestones (completed, right?)P3 milestones (completed, right?)
� Read handout, re-read k-spec
� Chosen 3+ weekly joint hacking sessions
� Set up source control repository
� Rough-draft division of labor, rough pseudo-code/outlines
� Typed some code...?

Book report topic chosen? Great for airplane time...Book report topic chosen? Great for airplane time...

Summer internship with SCS Facilities?Summer internship with SCS Facilities?

15-410, S’04- 3 -

A Word on the Final Exam

DisclaimerDisclaimer
� Past performance is not a guarantee of future results

The course will changeThe course will change
� Up to now: “basics”

� What you need for Project 3
� Coming: advanced topics

� Design issues
� Things you won't experience via implemention

Examination will change to matchExamination will change to match
� More design questions
� Some things you won't have implemented

15-410, S’04- 4 -

Outline

Question 1Question 1

Question 2Question 2

Question 3Question 3

Question 4Question 4

Question 5Question 5

15-410, S’04- 5 -

Past Misunderstandings

This is a This is a CC programming class! programming class!
� sizeof (char) == 1 /* 8 bits */
� sizeof (int) == 4 /* 32 bits, mostly true now */
� You need to really understand pointers

SemanticsSemantics
� '\0' isn't “just” a 1-byte zero – it's the zero char
� Compare 0, '\0', NULL

Other languages are excellentOther languages are excellent
� ...but very few are ok for writing OS code

15-410, S’04- 6 -

Q1 – Definitions (graded gently)

XCHG XCHG
� instruction, atomically, exchanges

Kernel Stack Kernel Stack
� stack used by a thread while running kernel code
� “stack” != “memory”, “stack” != “control block”

Atomic Instruction SequenceAtomic Instruction Sequence
� Must not be interrupted/interleaved, should be short

ExceptionException
� Control transfer to OS, caused by instruction stream

Yield()Yield()

15-410, S’04- 7 -

Q2 – Interrupt Handling

Misconception City!Misconception City!
� static local variable
� What's that ol' IRET do, anyway?
� If an interrupt fires in the forest, and nobody hears it...
� “Assume an infinite stream of interrupts...”
� “printf() is a system call”
� Watch out for sneaky stack growth...

15-410, S’04- 8 -

static local variable??
static int ticks_since_boot = 0;static int ticks_since_boot = 0;

What's that all about?What's that all about?
� A weird C trivia question, except...

� Used in C++ and Java too!

What's the proper scope for What's the proper scope for ticks_since_bootticks_since_boot ??
� Used by only one procedure

� Remember, don't specify data items in your interface!!!
� Specify methods instead

� Used by only one procedure
� Don't want it to be global

� But local variables “reset” each time procedure is called!
� Unless they are declared “static”!!!

Static = procedure-local persistent variable (oh, and ...)Static = procedure-local persistent variable (oh, and ...)

15-410, S’04- 9 -

What's that ol' IRET do, anyway?
IRET should not be mysteriousIRET should not be mysterious

� You used it in P1, will use it a lot in P3
� Looking things up in intel-*.pdf is a good idea

On interrupt/exception, processor On interrupt/exception, processor follows a protocolfollows a protocol
� Saves some state (“trap frame”), typically on stack
� What's that “state” for?

� Exception: explain what “caused” the exception
� Interrupt & exception: document “where we were at the time”
� Handler done? Ram it back into the relevant registers!

» IRET

So...So...
� IRET pops top of stack into %EIP, %CS, %EFLAGS (...)

15-410, S’04- 10 -

Other issues with the bad code

IRETIRET happens before function clean-up happens before function clean-up
� ...leaks “caller's %ebp” each time
� True, but we never run that many times

Registers might be corrupted before Registers might be corrupted before PUSHAPUSHA
� Could happen...
� ...but not as a result of a static local declaration/initialization

15-410, S’04- 11 -

If an interrupt fires in the forest...
What do we mean by a “disabled” interrupt?What do we mean by a “disabled” interrupt?

� Alternate term: “masked”

Why do we “disable interrupts”?Why do we “disable interrupts”?
� To protect an atomic instruction sequence...
� ...which should be “short”...
� ...so it's ok for interfering sequences to...

� ...die?

15-410, S’04- 12 -

If an interrupt fires in the forest...
Why do we “disable interrupts”?Why do we “disable interrupts”?

� To protect an atomic instruction sequence...
� ...which should be “short”...
� ...so it's ok for interfering sequences to...

� ...wait a bit before they can run!

What do we mean by a “disabled” interrupt?What do we mean by a “disabled” interrupt?
� Alternate term: “deferred”!
� The interrupt controller will remember it until we re-enable

Why should interrupt handlers be “short”?Why should interrupt handlers be “short”?
� Not: longer ones are more likely to throw away interrupts!

� No length would be safe!
� Because some hardware will get angry if we don't answer...

� ...or maybe some user code will.

15-410, S’04- 13 -

If an interrupt fires in the forest...
Impatient EthernetImpatient Ethernet

� Interrupts when each packet arrives
� When “ring buffer” overflows, packets will be lost

� Process them soon ...

Impatient DiskImpatient Disk
� Interrupts when sector is ready
� Say “Oh, and give me the next sector too” soon ...

� Or it will have rotated past the head.

Impatient Timer?Impatient Timer?
� Reloads and starts counting before you process interrupt
� Inter-interrupt period is, well, 10 milliseconds
� (1 billion / 1 hundred) instructions...
� That is a deadline, but it's not really a harsh one.

15-410, S’04- 14 -

“Assume an infinite stream of
interrupts...”

Each interrupt handler invocation uses stack spaceEach interrupt handler invocation uses stack space
� True

“If we have an infinite stream of interrupts...overflow!”“If we have an infinite stream of interrupts...overflow!”
� True
� True of any interrupt handler code

� .c, .S, asm(), ...

Can this happen?Can this happen?
� Each device issues one interrupt, waits for dismissal

� outb(...) in 15-410 x86 support code
� Finite number of devices on system
� How many trap frames can be on stack?

15-410, S’04- 15 -

“printf() is a system call”
ReasoningReasoning

� printf() is a system call
� System calls are slow
� Interrupt handlers should not be slow

printf()printf() isn't magic... isn't magic...
� printf() is a library routine
� ...which sometimes invokes a system call...
� ...if it's not already in the kernel!

kernel kernel printf()printf() is a library routine... is a library routine...
� ...which calls the console driver!
� It may or may not be “slow”... (scrolling screen isn't zippy)
� ...but it's not impossibly slow.

15-410, S’04- 16 -

Sneaky Stack Growth

People generally understandPeople generally understand
� Function call sequence begins with pushing parameters
� Then there is a call instruction
� What happens after the call ?

Several people claimedSeveral people claimed
� When timer_handler() calls printf() and then outb() ...
� ...“all of those parameters are still on the stack at POPA”

15-410, S’04- 17 -

Q3: Stack Trace

Many people got this essentially rightMany people got this essentially right

Common “oops”Common “oops”
� Assuming mystery(s1, s2) because it “seems natural”
� Function table shows mystery(s2, s1)

Trouble?Trouble?
� Review P0 code
� During P3 you may well need to debug from a hex dump

15-410, S’04- 18 -

Q3: Stack Trace

void main()
{
 printf("Fred!\n");
 exit(99);
}

15-410, S’04- 19 -

Q3: Stack Trace
LC0:LC0:
 .ascii “Fred!\12\0”
_main:
 pushl %ebp
 movl %esp,%ebp
 pushl $LC0
 call _printf

 addl $4,%esp ⇐ What's that?
 pushl $99
 call _exit

 addl $4,%esp ⇐ There it is again!!!
 leave
 ret

15-410, S’04- 20 -

Q4: Deadlock
Many people got this Many people got this mostlymostly right right

Key ideaKey idea
� Four requirements for deadlock
� Four ways to prevent it (“Four Ways to Forgiveness”)
� One of them is commonly used (locking order)

� Now you intuitively understand that

Subtle ideaSubtle idea
� You can lock anything as long as each lock() is “in order”
� lock(0); lock(1); lock(33); unlock(33); lock(2);
� Which tool should go at the end?

15-410, S’04- 21 -

Q5: Concurrency
“Race condition” / “Thread-safe” still not clear“Race condition” / “Thread-safe” still not clear

� Neither one is thread-safe (on either exam)!

MythsMyths
� A: “As long as shared state is changed inside a mutex I'm ok”
� B: “Once cond_wait() returns I'm good to go”
� “Since neither foo() writes to shared state everything is ok”

15-410, S’04- 22 -

Myth “A”
"If shared state is changed inside a mutex I'm ok""If shared state is changed inside a mutex I'm ok"

� Not if the decision about how to change is outside!

if (queue->start == (queue->end + 1) % QUEUE_LEN)
 return -1;
/* now we mutate NO MATTER WHAT */
mutex_lock(&queue->lock);
queue->buf[queue->end] = data;
queue->end = (queue->end + 1) % QUEUE_LEN;
mutex_unlock(&queue->lock);

15-410, S’04- 23 -

Myth “B”
"Once cond_wait() returns I'm good to go""Once cond_wait() returns I'm good to go"

� You're running with the lock, but are you running first ?

mutex_lock(&stack->lock);
/* If the stack is empty, wait for data *
if (stack->spot == -1)
 cond_wait(&stack->empty, &stack->lock);
data = stack->buf[stack->spot]; /* It can be -1 again! */
stack->spot--;
mutex_unlock(stack->lock);

15-410, S’04- 24 -

Shared Myth
“Since neither foo() writes to shared state foo() is ok”“Since neither foo() writes to shared state foo() is ok”

� What about main()-vs-foo() conflicts?

tid[0] = thr_create(foo, 0); /* foo(0) reads tid[0..1] */
tid[1] = thr_create(foo, 1); /* foo(1) reads tid[0..1] */

main() writes tid[0..1], foo() reads tid[0..1]main() writes tid[0..1], foo() reads tid[0..1]
� Nary a mutex in sight...
� Does foo(0) run before or after “ tid[0] = ”?

15-410, S’04- 25 -

Summary
90% = 67.590% = 67.5 15 students15 students

80% = 60.080% = 60.0 17 students17 students

70% = 52.570% = 52.5 7 students 7 students

<70%<70% 6 students 6 students

