15-410

“..What does IRET do, anyway?...”

Exam #1
Feb. 27, 2004

Dave Eckhardt
Bruce Maggs

-1 - L18_Examl 15-410, S'04

Synchronization

Final Exam list posted
= You must notify us of conflicts in a timely fashion

P3 milestones (completed, right?)
= Read handout, re-read k-spec
Chosen 3+ weekly joint hacking sessions
Set up source control repository
Rough-draft division of labor, rough pseudo-code/outlines
Typed some code...?

Book report topic chosen? Great for airplane time...
Summer internship with SCS Facilities?

-2 - 15-410, S'04

A Word on the Final Exam

Disclaimer
= Past performance is not a guarantee of future results

The course will change

= Up to now: “basics”
= What you need for Project 3

= Coming: advanced topics
= Design issues
= Things you won't experience via implemention

Examination will change to match
= More design questions
= Some things you won't have implemented

15-410, S'04

Outline

Question 1
Question 2
Question 3
Question 4
Question 5

15-410, S'04

Past Misunderstandings

Thisis a C programming class!
= sizeof (char) == 1 /* 8 bits */
= sizeof (int) ==4 [* 32 bits, mostly true now */
= You need to really understand pointers

Semantics
= '\O'isn't “just” a 1-byte zero — it's the zero char
= Compare 0, \O', NULL

Other languages are excellent
= _..but very few are ok for writing OS code

15-410, S'04

Q1 — Definitions (graded gently)

XCHG

= instruction, atomically, exchanges

Kernel Stack
= stack used by a thread while running kernel code
= “stack” I= “memory”, “stack” != “control block”

Atomic Instruction Sequence
= Must not be interrupted/interleaved, should be short

Exception
= Control transfer to OS, caused by instruction stream

Yield()

15-410, S'04

Q2 — Interrupt Handling

Misconception City!

static local variable
What's that ol' IRET do, anyway?

If an interrupt fires in the forest, and nobody hears it...

“Assume an infinite stream of interrupts...”
“printf() is a system call”
Watch out for sneaky stack growth...

15-410, S'04

static local variable??

static int ticks_since_boot = 0;

What's that all about?

= A weird C trivia question, except...
= Used in C++ and Java too!

What's the proper scope for ticks_since_boot ?

= Used by only one procedure
= Remember, don't specify data items in your interface!!!
= Specify methods instead

= Used by only one procedure
= Don't want it to be global

= But local variables “reset” each time procedure is called!
= Unless they are declared “static™!!!

Static = procedure-local persistent variable (oh, and ...)
-8 - 15-410, S'04

What's that ol' IRET do, anyway?

IRET should not be mysterious
= YouuseditinP1, willuseit alotinP3
= Looking things up inintel-*.pdfisa good idea

On interrupt/exception, processor follows a protocol
= Saves some state (“trap frame”), typically on stack

= What's that “state” for?
= EXxception: explain what “caused” the exception
= Interrupt & exception: document “where we were at the time”

= Handler done? Ram it back into the relevant registers!
» IRET

So...
= |RET pops top of stack into %EIP, %CS, %EFLAGS (...)

-0- 15-410, S'04

Other iIssues with the bad code

IRET happens before function clean-up
= _..leaks “caller's %ebp” each time
= True, but we never run that many times

Registers might be corrupted before PUSHA
= Could happen...
= _..but notas aresult of a static local declaration/initialization

- 10 - 15-410, S'04

If an interrupt fires Iin the forest...

What do we mean by a “disabled” interrupt?
= Alternate term: “masked”

Why do we “disable interrupts™?
= To protect an atomic instruction sequence...
= _..which should be “short”...

= ...S0 it's ok for interfering sequences to...
= ..die?

-11 - 15-410, S'04

If an interrupt fires Iin the forest...

Why do we “disable interrupts™?
= To protect an atomic instruction sequence...
= ...which should be “short”...

= ...S0 it's ok for interfering sequences to...
= ...wait a bit before they can run!

What do we mean by a “disabled” interrupt?
= Alternate term: “deferred”!
= The interrupt controller will remember it until we re-enable

Why should interrupt handlers be “short"?

= Not: longer ones are more likely to throw away interrupts!
= No length would be safe!

= Because some hardware will get angry if we don't answer...

= ...0r maybe some user code will.
- 12 -

15-410, S'04

If an interrupt fires Iin the forest...

Impatient Ethernet
= |nterrupts when each packet arrives

= When “ring buffer” overflows, packets will be lost
= Process them soon...

Impatient Disk
= |nterrupts when sector is ready

= Say “Oh, and give me the next sector too” soon...
= Or it will have rotated past the head.

Impatient Timer?
= Reloads and starts counting before you process interrupt
= |nter-interrupt period is, well, 10 milliseconds
= (1 billion | 1 hundred) instructions...

= That is a deadline, but it's not really a harsh one.
- 13 -

15-410, S'04

“Assume an Infinite stream of

interrupts...”

Each interrupt handler invocation uses stack space
= True

“If we have an infinite stream of interrupts...overflow!”
= True

= True of any interrupt handler code
= C,.S,asm(), ...

Can this happen?

= Each device issues one interrupt, waits for dismissal
= outb(...) iIn 15-410 x86 support code

= Finite number of devices on system
= How many trap frames can be on stack?

-14 - 15-410, S'04

“printf() I1s a system call

Reasoning
= printf() IS a system call
= System calls are slow
= |nterrupt handlers should not be slow

printf() isn't magic...
= printf() IS a library routine
= _..which sometimes invokes a system call...
= _.ifit's not already in the kernel!

kernel printf() is a library routine...
= ...which calls the console driver!
= |t may or may not be “slow”... (scrolling screen isn't zippy)
= _..butit's not impossibly slow.

- 15 - 15-410, S'04

Sneaky Stack Growth

People generally understand
= Function call sequence begins with pushing parameters
= Thenthereisa call instruction
= What happens after the call ?

Several people claimed
= When timer_handler() calls printf() and then outb()
= .."“all of those parameters are still on the stack at POPA

- 16 - 15-410, S'04

Q3: Stack Trace

Many people got this essentially right

Common “oops”
= Assuming mystery(sl, s2) because it “seems natural”
= Function table shows mystery(s2, s1)

Trouble?
= Review PO code

= During P3 you may well need to debug from a hex dump

-17 - 15-410, S'04

Q3: Stack Trace

void main()

{
printf("Fred\n");

exit(99);
}

-18 - 15-410, S'04

Q3: Stack Trace

LCO:
.ascil “Fred\12\0”
__main:
pushl %ebp
movl %esp,%ebp
pushl $LCO
call _printf

addl $4,%esp [1 What's that?
pushl $99

call _exit

addl $4,%esp [0 There itis again!!!
leave

ret
-19 - 15-410, S04

Q4: Deadlock

Many people got this mostly right
Key idea

= Four requirements for deadlock
= Four ways to prevent it (“Four Ways to Forgiveness”)

= One of themis commonly used (locking order)
= Now you intuitively understand that

Subtle idea

= You can lock anything aslong as each lock() is “in order”
= lock(0); lock(1); lock(33); unlock(33); lock(2);
= Which tool should go at the end?

- 20 - 15-410, S'04

Q5: Concurrency

“Race condition” / “Thread-safe” still not clear
= Neither one is thread-safe (on either exam)!

Myths
= A: “As long as shared state is changed inside a mutex I'm ok”
= B: “Once cond_wait() returns I'm good to go”
= “Since neither foo() writes to shared state everything is ok”

-21 - 15-410, S'04

Myth “A”

"If shared state is changed inside a mutex I'm ok"
= Not if the decision about how to change is outside!

If (Queue->start == (queue->end + 1) % QUEUE_LEN)
return -1;

/* now we mutate NO MATTER WHAT */

mutex_lock(&gueue->lock);

gueue->buf[queue->end] = data;

gueue->end = (queue->end + 1) % QUEUE_LEN,;

muteXx_unlock(&gueue->lock);

- 22 - 15-410, S'04

Myth “B”

"Once cond_wait() returns I'm good to go"
= You're running with the lock, but are you running first ?

mutex_lock(&stack->lock);
/* If the stack is empty, wait for data *
If (stack->spot == -1)
cond_wait(&stack->empty, &stack->lock);
data = stack->buf[stack->spot]; /* It can be -1 again!*/
stack->spot--;
mutex_unlock(stack->lock);

- 23 - 15-410, S'04

Shared Myth

“Since neither foo() writes to shared state foo() is ok”
= What about main()-vs-foo() conflicts?

tid[0] = thr_create(foo, 0); /* foo(0) reads tid[0..1] */
tid[1] = thr_create(foo, 1); /* foo(1) reads tid[0..1] */

main() writes tid[0..1), foo() reads tid[0..1]

= Nary a mutex in sight...
= Does foo(0) run before or after “ tid[0] = "?

-24 - 15-410, S'04

Summary

90% = 67.5 15 students
80% = 60.0 17 students
70% = 52.5 7 students
<70% 6 students

- 25 - 15-410, S'04

