
Computer Science 15-410: Operating Systems
Mid-Term Exam (A), Spring 2007

1. Please read the entire exam before starting to write. This should help you
avoid getting bogged down on one problem.

2. Be sure to put your name and Andrew ID below and also put your Andrew ID at the top of
each following page.

3. This is a closed-book in-class exam. You may not use any reference materials during the
exam.

4. If you have a clarification question, please write it down on the card we have provided. Please
don’t ask us questions of the form “If I answered like this, would it be ok?” or “Are you
looking for ...?”

5. The weight of each question is indicated on the exam. Weights of question parts are estimates
which may be revised during the grading process and are for your guidance only.

6. Please be concise in your answers. You will receive partial credit for partially correct answers,
but truly extraneous remarks may count against your grade.

7. Write legibly even if you must slow down to do so! If you spend some time to
think clearly about a problem, you will probably have time to write your answer legibly.

Andrew
Username

Full
Name

Question Max Points Grader

1. 10

2. 15

3. 20

4. 15

5. 20

80

Andrew ID: 2

I will not discuss the contents of this 15-410 midterm with anybody, whether or not in this class,
whether or not present in this exam session with me, before 19:30 Friday, March 2nd.

Signature: Date

Please note that there are system-call and thread-
library “cheat sheets” at the end of the exam.

Please note that there are system-call and thread-
library “cheat sheets” at the end of the exam.

Andrew ID: 3

1. 10 points Short answer.

Give a three-to-five sentence definition of each of the following terms as it applies to this course.
Your goal is to make it clear to your grader that you understand and can apply the concept when
necessary.

(a) 5 points Starvation

(b) 5 points Thread-safe

Andrew ID: 4

2. 15 points Process model.

During the “long” weekend between finishing up the thread library project and beginning the kernel
project, you wondered if you could crash the reference kernel by violating the boundaries of your
task’s address space. You decided to write three very short tests, each one probing whether some
part of your address space could be read from or written to. In order to avoid messy test program
crashes, you decided to use system calls instead of pointer accesses. Finally, you imposed diversity
requirements on yourself.

1. Each test would probe a different region/segment/area of the address space.

2. At least one test would probe readability, and at least one would probe writability.

3. At least one test should be “positive” (the read or write should be legal and should occur)
and at least one test should be “negative” (the read or write should be illegal and should
be rejected by the kernel).

You should be able to write each probe program in under 15 lines of code. Each should print the
string “PASS” or “FAIL”, indicating whether the kernel’s response to your system call was correct
or incorrect.

(a) 5 points This test probes the region/segment/area for

readability / writability (circle one), which the kernel should allow / disallow (circle one).

Andrew ID: 5

(b) 5 points This test probes the region/segment/area for

readability / writability (circle one), which the kernel should allow / disallow (circle one).

(c) 5 points This test probes the region/segment/area for

readability / writability (circle one), which the kernel should allow / disallow (circle one).

Andrew ID: 6

3. 20 points Conditions.

Suddenly, you wake up. There’s a message in your inbox urgently demanding to know where the
new test code is. Then you remember... after a challenging but rewarding semester in 15-410, you
were asked to serve as a teaching assistant. When you made the mistake of criticizing the quality of
the thread-library test suite, Professor Eckhardt responded by asking you to write some condition
variable test code.

In particular, you are asked to write a program which tests whether the following property is true of
a condition-variable implementation: when two threads are awaiting a condition and the condition
is signaled, one thread is awakened but the other thread is not. Your program should, with very
high probability, print the string “PASS” if the condition variable implementation you exercise
obeys this condition and “FAIL” if it does not. Your program should make its decision in less than
ten seconds.

Because you are a fan of the dystopian science fiction thriller “Bladerunner,” you decide to package
the thread-related and housekeeping data structures (e.g., condition variables, mutexes, ints, chars,
doubles, ...) used by your test in a struct nexus and to limit the struct to containing six fields.

(a) 5 points Please declare your struct nexus here. Also write a function
void nexus init(nexus p np) to initialize a nexus.

typedef struct nexus {

} *nexus_p;

void nexus_init(nexus_p np)

{

}

Andrew ID: 7

(b) 15 points Now please write your test code. The suggested structure is one to three small helper
functions and a main() function. Note that, as an interface-compliant test program, you cannot
inspect or modify the internals of any thread-library data objects.

Andrew ID: 8

You may use this page as extra space for your “one-two test” solution if you wish.

Andrew ID: 9

4. 15 points Inscrutable code.

Another part of your duties as a 15-410 teaching assistant is evaluating claims made by students
in your class. For example, it is not unusual for a student to claim that the Project 2 reference
kernel contains a bug. Sometimes the bug is in the kernel, but other time it is in the student’s
code. Consider the following example, which the student wrote in assembly language “so there is
no question about what my code does.”

#define ASSEMBLER

#include <syscall_int.h>

syntax is "INSTRUCTION SOURCE, DEST"

.text

.globl main

.type main, @function

main:

pushl %ebp

movl %esp, %ebp

pushl %esi

pushl $8

call _malloc

movl $0x80000000, (%eax)

addl $4, %eax

movl $4096, (%eax)

movl %eax, %esi

int $NEW_PAGES_INT

movl $0x80000000, %eax

subl $4092, %eax

movl %eax, %esi

int $THREAD_FORK_INT

movl %eax, %esi

int $SET_STATUS_INT

movl %eax, %esi

int $VANISH_INT

popl %esi

movl %ebp, %esp

popl %ebp

ret

.ident "bmm: (angry) 3.14"

Before going to sleep, the student mailed you the code along with a declaration that the kernel is
incorrectly executing it and a request to discuss the matter before class the next day. This means
that you will need to figure out, on your own, how a Pebbles kernel should execute this code.

Andrew ID: 10

What should be the result of running this program?

1. Should it complete, hang, or crash?

2. Should the kernel or the shell print any diagnostics? If so, what?

3. If there are multiple alternative outcomes, briefly outline them.

Be sure to briefly but convincingly support your claims. Note that it is neither necessary nor
desirable to provide a blow-by-blow description of the effect of each instruction on every register—
your answer should focus on the questions listed above as well as describing significant other effects.

Andrew ID: 11

You may use this page as extra space if you wish.

Andrew ID: 12

5. 20 points Deadlock

The CMU Computer Club operates a machine room in the subbasement of Cyert Hall. The com-
puters in this machine room provide a variety of services for the campus community, as summarized
in the table below.

Machine Purpose

aluminum AFS File Server

astatine Contrib Web Server

cadmium MySQL Database

magnesium Mail Exchanger

sodium Kerberos KDC

In addition, the machine room is staffed by a number of former and future 15-410 students who are
very conscientious about data reliability. Thus, six months ago, two of the club operators (known
informally as zero cool and crash override) developed two backup systems to preserve data.

Unfortunately a problem was recently encountered with the backup systems that neither zero cool
nor crash override can diagnose, and you have been asked to debug the system and determine the
problem.

The main component categories of both backup systems are as follows.

Tape Drives Both backup systems use one or more tape drives to write data to magnetic
tape for storage. There are exactly two tape drives (labeled A & B), connected to the
same machine.

Tape Robot The tape robot is a device that mechanically fetches tapes from the tape library
and inserts them into one of the tape drives. It can also remove tapes from the drives and
place them back in the library.

Machine Data Both backup systems back up data from one or more machines.

Previously the tape devices were accessed by the two backup systems without coordination, but
one day an unexpected sequence of conflicting commands resulted in a bearing in the robot’s arm
overheating and failing. Since then, a locking protocol has been established to ensure correct
operation of each device.

1. Each tape drive must be locked before use to prevent multiple processes from issuing
contradictory requests (which could Result in the tape drives eating tapes).

2. The tape robot must be locked before use to prevent conflicting commands from resulting
in the tape robot fighting itself.

3. Each machine must be locked before backup in order to guarantee a consistent snapshot
of machine state.

This space intentionally left nearly blank.

Andrew ID: 13

Primary backup system

The primary backup system, developed by zero cool, serves to make daily backups of user file data
and administrative configuration information (the per-machine user account list, software package
configuration, log files, etc.) from each machine in the club’s server farm (as described above).

The primary backup system is executed as a daily cron (batch) job, starting at 03:00, and the entire
session typically takes about two hours. The resource allocation procedure for this backup system
is as follows.

Lock Tape Robot.

For each machine m ...

Randomly pick a tape drive t to lock.

Lock tape drive t.

Lock machine m.

Dump the data on machine m to tape drive t.

Unlock machine m.

Unlock tape drive t.

... repeat for all machines.

Unlock Tape Robot.

Note that primary backups are made to a random tape drive to avoid uneven wear.

Even though the resource allocation protocol involving multiple machines in a distributed environ-
ment is complicated, it turns out that the locking semantics can be modeled by mutexes similar to
those used in the Project 2 thread library.

This space intentionally left nearly blank.

Andrew ID: 14

(a) 2 points Add code to the following template to allocate resources and initiate backups as described
by the primary backup procedure above.

#define NUM_MACHINES 5

typedef enum {TAPE_DRIVE_A, TAPE_DRIVE_B} tape_drive_t;

/* Available functions (none of these can fail). */

void backup_machine(int machine, tape_drive_t tape_drive);

tape_drive_t choose_random_tape_drive(void); /* Returns TAPE_DRIVE_A or TAPE_DRIVE_B. */

void mutex_lock(mutex_t *mp);

void mutex_unlock(mutex_t *mp);

/* Available global variables. */

mutex_t *machine[NUM_MACHINES]; /* Includes mutexes for all machines. */

mutex_t *tape_drive_a, *tape_drive_b;

mutex_t *tape_robot;

/* The primary backup system. */

void primary_backup(void)

{ /* Fill in code here. */

}

Andrew ID: 15

(b) 3 points Draw a process/resource graph illustrating the state of the system when data from one

machine (e.g., aluminum), is being written to tape drive A.

Database backup system

Because the MySQL database files are very large, and dumping them requires special interactions
with the MySQL server application, crash override has developed a separate database backup
application. This system complements the primary backup system by making archival backups of
the MySQL files on the database machine each time the database tables reach a threshold size. Since
this system is triggered by a data-specific threshold, it can execute at any time of day. However,
the application guarantees that a backup will not be triggered until a previously-running backup
has completed. In practice, a database backup is triggered around once a month and takes about
twelve hours to complete. The resource allocation procedure for this backup system is as follows.

Lock Database Machine.

Lock Tape Robot.

Lock Tape Drive A.

Dump the database contents to drive A.

Unlock Tape Drive A.

Lock Tape Drive B.

Dump the database contents to drive B.

Unlock Tape Drive B.

Unlock Tape Robot.

Unlock Database Machine.

Note that database backups are written to two tapes, using both tape drives. This approach was
chosen by crash override as a defense against one tape drive eating a tape or a tape becoming
unreadable. Since the tape drives are backing up the same content, the writes must be sequential.

Andrew ID: 16

(c) 2 points Add code to the following template to allocate resources and initiate backups as described
by the database backup procedure above.

#define NUM_MACHINES 5

#define DB_MACHINE 2 /* cadmium, from table */

typedef enum {TAPE_DRIVE_A, TAPE_DRIVE_B} tape_drive_t;

/* Available functions (none of these can fail). */

void database_backup(tape_drive_t tape_drive);

void mutex_lock(mutex_t *mp);

void mutex_unlock(mutex_t *mp);

/* Available global variables. */

mutex_t *machine[NUM_MACHINES]; /* Includes mutexes for all machines. */

mutex_t *tape_drive_a, *tape_drive_b;

mutex_t *tape_robot;

/* The database backup system. */

void database_backup(void)

{ /* Fill in code here. */

}

Andrew ID: 17

(d) 3 points Draw a process/resource graph illustrating the state of the system when a database
dump is being written to tape drive B.

The plot thickens

One day, a Computer Club user sends mail stating that he accidentally trashed his home directory
and needs it restored from backup. Computer Club operator zero cool fetches the most recent
backup tape and discovers that the most recent backup was made five months ago!

Performing a cursory equipment scan, zero cool determines that Tape Drive A has a tape loaded
in it and all the equipment appears to be functioning correctly. However, neither primary backups
nor database backups have been performed, for some unknown reason, for the past five months.

Of course, zero cool assumes that the problem must be due to a bug in crash override’s database
backup script that caused the tape robot to malfunction. Meanwhile, crash override also discovers
the backup failure, and assumes the problem must be due to a bug in zero cool’s primary backup
script. They begin an argument with each other and defend their respective code bases by showing
their process/resource graphs to prove that each one’s code contains no bug that could have resulted
in this condition.

Andrew ID: 18

(e) 3 points Who is right? Is there a bug in one of the two backup systems that would have resulted
in the described condition? If not, how did this situation arise?

(f) 2 points Draw the process/resource graph of the overall system that illustrates problem encoun-
tered. Use the graph and a brief textual or pseudo-code explanation to convincingly explain what
went wrong.

Andrew ID: 19

(g) 5 points What is the simplest change you could suggest making to the system as a whole which
would eliminate this problem?

Andrew ID: 20

System-Call Cheat-Sheet

/* Life cycle */

int fork(void);

int exec(char *execname, char *argvec[]);

void set_status(int status);

void vanish(void) NORETURN;

int wait(int *status_ptr);

void task_vanish(int status) NORETURN;

/* Thread management */

int thread_fork(void); /* Prototype for exam reference, not for C calling!!! */

int gettid(void);

int yield(int pid);

int cas_runflag(int tid, int *oldp, int *expectp, int *newp);

int get_ticks();

int sleep(int ticks); /* 100 ticks/sec */

/* Memory management */

int new_pages(void * addr, int len);

int remove_pages(void * addr);

/* Console I/O */

char getchar(void);

int readline(int size, char *buf);

int print(int size, char *buf);

int set_term_color(int color);

int set_cursor_pos(int row, int col);

int get_cursor_pos(int *row, int *col);

/* Miscellaneous */

void halt();

int ls(int size, char *buf);

/* "Special" */

void misbehave(int mode);

Andrew ID: 21

Thread-Library Cheat-Sheet

int mutex_init(mutex_t *mp);

int mutex_destroy(mutex_t *mp);

int mutex_lock(mutex_t *mp);

int mutex_unlock(mutex_t *mp);

int cond_init(cond_t *cv);

int cond_destroy(cond_t *cv);

int cond_wait(cond_t *cv, mutex_t *mp);

int cond_signal(cond_t *cv);

int cond_broadcast(cond_t *cv);

int thr_init(unsigned int size);

int thr_create(void *(*func)(void *), void *arg);

int thr_join(int tid, void **statusp);

void thr_exit(void *status);

int thr_getid(void);

int thr_yield(int tid);

int sem_init(sem_t *sem, int count);

int sem_wait(sem_t *sem);

int sem_signal(sem_t *sem);

int sem_destroy(sem_t *sem);

int rwlock_init(rwlock_t *rwlock);

int rwlock_lock(rwlock_t *rwlock, int type);

int rwlock_unlock(rwlock_t *rwlock);

int rwlock_destroy(rwlock_t *rwlock);

