
What You Need to Know
for Project Three

Dave Eckhardt

Steve Muckle



Carnegie Mellon University 6

Synchronization
• Reminder: Book report

• If end-of-semester won't be the best deadline for
you, it's ok for you to submit it early!

• Thinking about the future
• Fall: 15-412/612; 15/18-746; 15-445 
• Spring/Fall: 15-418/618: Parallel
• Spring: 15-411/611; 15-721: Database Systems

(by audition); 15-712 (by audition)
• Google “Summer of Code”?



Carnegie Mellon University 7

Overview

Introduction to the Kernel Project
Mundane Details in x86

registers, paging, the life of a memory access, context
switching, system calls, kernel stacks

Loading Executables

Style Recommendations (or pleas)

Attack Strategy

A Quick Debug Story



Carnegie Mellon University 8

Introduction to the Kernel
Project

P3:P2 :: P2:P1!

P2
• Stack, registers, stack, race conditions, stack

P3
• Stack, registers, page tables, scheduling, races...

You will “become one with” program execution

P1: living without common assumptions

P3: providing those assumptions to users



Carnegie Mellon University 9

The P3 Experience

• Goals/challenges
• More understanding

• Of OS
• Practice with synthesizing design requirements

• More code
• More planning
• More organization

• More quality!
• Robust

• More debugging!



Carnegie Mellon University 10

Introduction to the Kernel
Project: Kernel Features

Your kernels will feature:
- preemptive multitasking
- multiple virtual address spaces
- a “small” selection of useful system calls
- robustness (hopefully)



Carnegie Mellon University 11

Introduction to the Kernel Project:
Preemptive Multitasking 

“Preemptive multitasking” is
forcing multiple threads to
share the CPU

You will use the timer interrupt
to do this

Reuse your timer code from P1
if possible



Carnegie Mellon University 12

Introduction to the Kernel Project:
Preemptive Multitasking

Simple round-robin scheduling will suffice
• Some system calls will modify the sequence
• Think about them before committing to a design

Context switching is tricky but cool

As in P2, creating a new task/thread is hard
• Especially given memory sharing

As in P2, exiting is tricky too
• At least one “How can I do that???” question



Carnegie Mellon University 13

Introduction to the Kernel Project:
Multiple Virtual Address Spaces

The x86 architecture supports paging

You will use this to provide a virtual address
space for each user task

Each user task will be isolated from others

Paging will also protect the kernel from users

Segmentation will not be used for protection



Carnegie Mellon University 14

Introduction to the Kernel
Project: System Calls

You used them in P2

Now you get to implement them

Examples include fork(), exec(), thread_fork

There are easier ones like gettid()
• The core cluster – must work solidly

• fork(), exec()
• vanish(), wait()



Carnegie Mellon University 15

Mundane Details in x86

We looked at some of these for P1

Now it is time to get the rest of the story

How do we control processor features?

What does an x86 page table look like?

What route does a memory access take?

How do you switch from one process to
another?



Carnegie Mellon University 16

Mundane Details in x86:
Registers

General purpose regs (not interesting)

Segment registers (somewhat interesting)
- %cs, %ss, %ds, %es, %fs, %gs

%eip (a little interesting)

EFLAGS (interesting)

Control Registers (very interesting)
- %cr0, %cr1, %cr2, %cr3, %cr4
- esp0 field in the hardware “task segment”



Carnegie Mellon University 17

Mundane Details in x86:
General Purpose Registers

The most boring kind of register

%eax, %ebx, %ecx, %edx, %edi, %esi, %ebp,
%esp

%eax, %ebp, and %esp are exceptions, they
are slightly interesting
- %eax is used for return values
- %esp is the stack pointer
- %ebp is the base pointer



Carnegie Mellon University 18

Mundane Details in x86:
Segment Selector Registers

Slightly more interesting

%cs specifies the segment used to access
code (also specifies privilege level)

%ss specifies the segment used for stack
related operations (pushl, popl, etc)

%ds, %es, %fs, %gs specify segments used to
access regular data

Mind these during context switches!!!

If something specific breaks, check these



Carnegie Mellon University 19

Mundane Details in x86:
The Instruction Pointer (%eip)

It’s interesting

Cannot be read from or written to directly
• (branch, call, return)

Controls which instructions get executed

‘nuff said.



Carnegie Mellon University 20

Mundane Details in x86: 
The EFLAGS Register

It’s interesting

Flag city, including interrupt-enable, arithmetic flags
• You want “alignment check” off



Carnegie Mellon University 21

Mundane Details in x86:
Control Registers

Very interesting!

An assortment of important flags and values

%cr0 contains powerful system flags that
control things like paging, protected mode

%cr1 is reserved (now that’s really interesting)

%cr2 contains the address that caused the last
page fault



Carnegie Mellon University 22

Mundane Details in x86:
Control Registers, cont.

%cr3 contains the address of the current page
directory, as well as a couple paging related
flags

%cr4 contains… more flags (not as interesting
though)
- Protected mode virtual interrupts?
- Virtual-8086 mode extensions?
- Most of these are not usefully modified...

...but you should make an inventory.



Carnegie Mellon University 23

Mundane Details in x86:
Registers

How do you write to a special register?

Most of them: movl instruction

Some (like %cr's) you need PL0 to access

We provide assembly wrappers for some
• Maybe we should skip some!
• Think about each before using.

EFLAGS is a little different, but you may not be
writing directly to it anyway



Carnegie Mellon University 24

Mundane Details in x86: 
The Life of a Memory Access

Logical Address

Linear Address

Physical Address

Segmentation

Paging

(consists of 16 bit segment selector, 32 bit offset)

(32 bit offset)

(32 bit offset)



Carnegie Mellon University 25

Mundane Details in x86: 
The Life of a Memory Access

Logical Address

Linear Address

Segmentation

(consists of 16 bit segment selector, 32 bit offset)

(32 bit offset)

The 16 bit segment selector comes from a
segment register (%CS & %SS implied)

The 32 bit offset is added to the base
address of the segment

That gives us a 32 bit offset into the virtual
address space



Carnegie Mellon University 26

Mundane Details in x86:
Segmentation

Segments need not be backed by physical
memory and can overlap

Segments defined for these projects:

Kernel Code Kernel Data User Code User Data

0xFFFFFFFF

0x00000000



Carnegie Mellon University 27

Mundane Details in x86:
Segmentation

For Project 3 we are abusing segmentation
• All segments “look the same”
• Each linear address is just the “low-order

32 bits” of the logical address
• Confusing, but simplifies life for you
• See 15-410 segmentation guide on web

site



Carnegie Mellon University 28

Mundane Details in x86: 
The Life of a Memory Access

Linear Address

Physical Address

Paging

(32 bit offset)

(32 bit offset)

Top 10 bits index into page directory, point
us to a page table

The next 10 bits index into page table,
point us to a frame

The last 12 bits are an offset into that page
(and frame)



Carnegie Mellon University 29

Mundane Details in x86:
Page Directories and Tables

%CR3

Page 
Directory

Page 
Table

Page 
Table

Page 
Table

Current Task’s
Page Directory Address



Carnegie Mellon University 30

Mundane Details in x86:
Page Directories and Tables

%CR3

Page 
Directory

Page 
Table

Page 
Table

Page 
Table

Current Task’s
Page Directory Address

Logically, PDE's and PTE's are each 20 bits
of frame number and 12 bits of 000.



Carnegie Mellon University 31

Mundane Details in x86: 
Page Directory

The page directory is
4k in size

Contains 
pointers 
to page tables

Entries may be 
invalid (see 
“P” bit)

Figure from page 87 of intel-sys.pdf
This a jumping-off point!



Carnegie Mellon University 32

Mundane Details in x86: 
Page Table

Each page table is also 4k
in size

Contains 
pointers 
to pages

“P” bit again

Figure from page 87 of intel-sys.pdf
This a jumping-off point!



Carnegie Mellon University 33

Mundane Details in x86: 
The Life of a Memory Access

Whoa there, Slick… What if the page directory 
entry isn’t there?

What happens if the page table entry isn’t
there?

It’s called a page fault, it’s an exception, and it
lives in IDT entry 14

You will have to write a handler for this
exception and do something intelligent





Carnegie Mellon University 35

Mundane Details in x86:
Context Switching

The x86 provides a hardware “task” abstraction
• This makes context switching “easy”

But...
• Often faster to manage processes in software
• We can also tailor our process abstraction to our

particular needs
• Our OS is more portable if it doesn't rely on one

processor's notion of “task”

Protected mode requires one hardware task
• Already set up by 410 boot code



Carnegie Mellon University 36

Mundane Details in x86:
Context Switching

Context switching is a very delicate procedure
Great care must be taken so that when the

thread is restarted, it does not know it ever
stopped

“User” registers must be exactly the same
(%cr3 is the key non-user register)

Its stack must be exactly the same
Its page directory must be in place
Please carefully heed the handout warnings!



Carnegie Mellon University 37

Mundane Details in x86:
Context Switching

Hints on context switching:
• Use the stack, it is a convenient place to

store things
• If you do all your switching in one routine,

you have eliminated one thing you have to
save (%eip)

• New threads will require some special care
• Try to confine new-thread code; don't

infect your beautiful pure context-switcher



Carnegie Mellon University 38

Mundane Details in x86:
System Calls

System calls use “software interrupts”
• Which are not actually interrupts!

• They are immune to disable_interrupts()
• Which defers, not disables, anyway!



Carnegie Mellon University 39

Mundane Details in x86:
System Calls

System calls use “software interrupts”
• Which are not actually interrupts!

• They are immune to disable_interrupts()
• Which defers, not disables, anyway!

Install handlers much as you did for the timer,
keyboard

Calling convention specified in handout
• Matches P2

If you are rusty on the IDT refer back to P1



Carnegie Mellon University 40

Mundane Details in x86: 
Kernel Stacks

User threads have a separate stack for their
kernel activities

Located in kernel space

How does the stack pointer get switched to the
kernel stack?

User-Level
Stack

Kernel Stack TCB



Carnegie Mellon University 41

Mundane Details in x86: 
Kernel Stacks

When the CPU switches from user mode to
kernel mode the stack pointer is changed

The new (kernel) stack pointer to use is stored
in the configuration of the CPU hardware task
• Remember: we use only one “x86 task”

We provide a function to change this value
set_esp0(void* ptr)

Used during next user ⇒ kernel transition
• So set_esp0() “does nothing” (until later)



Carnegie Mellon University 42

Loading Executables

Same approach as P2

“RAM disk” file system

But you must write a
loader



Carnegie Mellon University 43

Loading Executables:
The Loader

RAM-disk bytes are part of the kernel data area
You need to load them into the task’s address

space
Code, rodata, data, bss, stack – all up to you!

Executables will be in “simple ELF” format
References to resources are in the handout



Carnegie Mellon University 44

Encapsulation!!!!!

You will re-implement chunks of your kernel

It will be painful if code is holographic

Don't “use a linked list of threads”

Do define a thread-list interface
• find(), append(), first(), ...

You may need to add a method...
• ...which changes the implementation entirely...
• But most existing interface uses (calls) will be ok



Carnegie Mellon University 45

Machine State Summary

256 MB RAM, keyboard, console, timer
IDT
CPU state

• General-purpose registers
• Segment registers
• EFLAGS, cr0...cr4, esp0

We set up for you
• Hardware task
• GDT (global descriptor table) – 4 segments



Carnegie Mellon University 46

Warning



Carnegie Mellon University 47

Attack Strategy

There is an attack
strategy in the handout

It represents where we
think you should be in
particular weeks

You WILL have to turn in
checkpoints

Excellent data indicate...

Missing one checkpoint
is dangerous...don't
miss two!



Carnegie Mellon University 48

Attack Strategy

Please read the handout a couple times over
the next few days

Create doxygen-only files
• scheduler.c, process.c, ...
• Document major functions
• Document key data structures
• A very iterative process

Suggestion: doxygen tentative responsibilities
• For a good time, estimate #lines, #days



Carnegie Mellon University 49

Partnership

Make an explicit partnership plan
• How often you'll meet, for how long

• Regular, fixed meetings are vital!
• Information flow

• When will you read each other's code?
• Meeting agenda suggestions

• Last time's open issues
• New issues
• Who will do what by next meeting?



Carnegie Mellon University 50

Grading Approach

These numbers are not final!

Weight Section

5 Kernel builds as directed

45 Shell loads, runs test programs

10 Concurrency

10 Style/structure

10 Basic tests

15 Non-basic tests

5 Thread tests (not using your P2)



Carnegie Mellon University 51

“Hurdle” Model

We will release a test suite
• ~15 “basic” tests
• ~15 “solidity” tests
• ~2 “stability” tests

Successful completion of Project 3 requires
• ~80% of each section of test suite
• Acceptable preemptibility and robustness

You will self-test your P3 when you turn it in



Carnegie Mellon University 52

“Hurdle” Model

Leap the P3 hurdle?
• Work on Project 4

• ~2 weeks after P3
• ~5% of course grade

• A modification/extension of your kernel
• Goal: “interesting”, more than “hard”

Thwarted?
• Extra time for P3 (~1 week)
• 0% will be assigned for P4 grade



Carnegie Mellon University 53

Warning!

To continue to P4, kernel must be complete 
• We will publish criteria
• Seemingly “trivial” things on the checklist

cost 20% of grade!

P3extra is not optional if kernel isn't complete
• We won't assign a P4 grade, so p3extra is

the only option

This is serious
• Please be serious about it



Carnegie Mellon University 54

A Quick Debug Story

Ha! You’ll have to have
been to lecture to hear
this story. 



Carnegie Mellon University 55

A Quick Debug Story

The moral is, please start
early. 



Carnegie Mellon University 56

Our Hopes for You

Project 3 can be a transformative experience
• You may become a different programmer

• Techniques, attitudes

Employers care about this experience

Alumni care about this experience
#include <end_of_412_concern_stories>



Carnegie Mellon University 57

Exhortation

Please read the project handout ASAP!
You need to plan how to get to Checkpoint 1

• Simple loader
• Dummy VM

• please write (encapsulated) bad code!!
• Getting from kernel mode to user mode
• Getting from user mode to kernel mode
• Lots of faults

• Solving them will require “story telling”



Carnegie Mellon University 58

Encouragement

This can be done
Stay on track

• Make all checkpoints
• Don't ignore the plan of attack
• Don't postpone merges

Spring 2012
• 2 groups dropped, two groups split (3 kernels)
• All other groups turned in working kernels
• Let's do it again!



Carnegie Mellon University 59

Good Luck on
Project 3!



Carnegie Mellon University 60

Reminder

12:15 meeting


