
Project 2: User Level Thread Library
15-410 Operating Systems

February 9, 2022

1 Overview

An important aspect of operating system design is organizing computations that run concurrently
and share memory. Concurrency concerns are paramount when designing multi-threaded
programs that share some critical resource, be it some device or piece of memory. In this
project you will write a thread library and concurrency primitives. This document provides
the background information and specification for writing the thread library and concurrency
primitives.

We will provide you with a miniature operating system kernel (called “Pebbles”) which
implements a minimal set of system calls, and some multi-threaded programs. These programs
will be linked against your thread library, stored on a “RAM disk,” and then run under the
supervision of the Pebbles kernel. Pebbles is documented by the companion document, “Pebbles
Kernel Specification,” which should probably be read before this one.

The thread library will be based on the thread fork system call provided by Pebbles, which
provides a “raw” (unprocessed) interface to kernel-scheduled threads. Your library will provide a
basic but usable interface on top of this elemental thread building block, including the ability to
join threads.

You will implement mutexes and condition variables based on your consideration of the options
provided by the x86 instruction set—including, but not limited to, the XCHG instruction for
atomically exchanging registers with memory or registers with registers. The lecture material
discusses several atomic operations in more detail.

2 Goals

• Becoming familiar with the ways in which operating systems support user libraries by
providing system calls to create processes, affect scheduling, etc.

• Becoming familiar with programs that involve a high level of concurrency and the sharing
of critical resources, including the tools that are used to deal with these issues.

• Developing skills necessary to produce a substantial amount of code, such as organization
and project planning.

• Working with a partner is also an important aspect of this project. You will be working
with a partner on subsequent projects, so it is important to be familiar with scheduling
time to work, a preferred working environment, and developing a good group dynamic
before beginning larger projects.

• Coming to understand the dynamics of source control in a group context, e.g., when to
branch and merge.

1

The partner goal is an important one–this project gives you an opportunity to debug not only
your code deliverables but also your relationship with your partner. You may find that some of
the same techniques apply.

3 Important Dates

Wednesday, February 9th Project 2 begins

Friday, February 11th You should be able to draw a very detailed picture of the parent and
child stacks during thr create() at the point when the child does its first PUSHL instruction.
In your design multiple pictures may be equally plausible, but it is important that you be
able to draw at least one case in detail. It is wise for each partner to independently draw
this picture before you compare notes and agree on all the details. It is not wise to skip this
step (unless you have previously written a thread library).

Monday, February 14th You should have thread creation working well enough to pass the
startle test we provide. In particular, you should be able to run:

[410-shell]$ misbehave_wrap 0 startle

Wednesday, February 16th You should have thread creation, mutexes, and condition variables
working well.

Friday, February 18th If you haven’t least begun debugging cyclone and agility drill by
this point, you run the risk of turning in a thread library with serious structural flaws and
lacking concurrency debugging experience useful for the kernel project.

Wednesday, February 23rd Project 2 due at 23:59:59

4 Overview of Deliverables

The library you will write will contain:

• System-call stub routines (see the “Pebbles Kernel Specification” document)

• A software exception handler which implements automatic stack growth for legacy programs

• A software exception handler which handles thread crashes for multi-threaded programs

• Thread management calls

• Mutexes and condition variables

• Semaphores

• Readers/writers locks

2

Unlike system call stubs (see the “Pebbles Kernel Specification” document), thread library
routines need not be one-per-source-file, but we expect you to use good judgment when
partitioning them (and this may influence your grade to some extent). You should arrange
that the Makefile infrastructure you are given will build your library into libsyscall.a and
libthread.a according to the directions found in the README and config.mk files found in the
tarball.

4.1 Automatic stack growth for legacy single-threaded applications

If you examine the main() “main wrapper” code in crt0.c, you will find that it receives two
“extra” parameters from the kernel’s program loader, called stack high and stack low, and
passes them to a function called install autostack() before main() runs. These two parameters
are the highest and lowest virtual address of the initial stack space that the kernel created before
launching the program (when install autostack() is called, %ESP will naturally be some value
between stack high and stack low). You are expected to register a swexn() exception handler of
your own devising which resolves appropriate page-fault exceptions by performing automatic stack
growth according to the venerable Unix tradition (automatic stack growth is discussed further
in the “Pebbles Kernel Specification” document). Your handler is not expected to “correct” or
otherwise resolve any exceptions other than page faults, and is also not expected to “correct” page
faults which are unrelated to automatic stack growth. We have provided a simple test program,
stack test1, which you can use to exercise your stack-growth handler.

4.2 Thread-crash handling for multi-threaded applications

If one thread in a multi-threaded application experiences a fatal exception, the application as
a whole is unlikely to continue in a useful fashion. The crashed thread may well have been
holding locks, may have temporarily broken data-structure invariants, or may have been working
to produce a result that other threads will later need. This suggests that a thread library should
provide a sensible default behavior which reacts to the untimely death of a thread.

In the other direction, note that automatic stack growth is not a typical feature in multi-
threaded environments. There are multiple stack regions, which must be placed within the address
space by the thread library. However, only the application knows how many thread stacks it will
create and how large they will need to be. For that reason, it is typical for threaded programs
to pre-declare the stack-size needs of each thread (see thr init() below) and for thread libraries
not to support growing thread stacks once they are created.

This means that threads in a multi-threaded application should probably handle exceptions
according to a different plan than that used by the initial thread in a single-threaded legacy
application. As a result, you should give careful consideration to how thr init() should transition
an application from the legacy single-threaded environment which was set up before main() to
a multi-threaded environment. What guarantees, if any, that obtained before thr init() was
called should remain valid, and how should those guarantees be implemented? What code should
implement which policies for which threads?

Threads can also “crash voluntarily” in the absence of a hardware exception. Various
library routines and language facilities (e.g., assert() and affirm()) rely on a function called
“panic”: void panic(const char *format, ...). We have provided you with a skeletal (i.e.,
insufficient) implementation of panic(), which you should enhance appropriately.

3

5 Thread Library API

You may assume that programs which use condition variables will include cond.h, programs which
use semaphores will include sem.h, etc.

Please note that all lock-like objects are defined to be “unlocked” when created.

5.1 Return values

You will note that many of the thread-library primitives (e.g., mutex unlock()) are declared as
returning void. This is because there are some operations that can’t meaningfully “return an error
code.” Consider what would happen if a program tried to invoke exit() and exit() “failed.”
What could the program do? Or consider the free() storage-allocator function. If a program
called free() on an address, and free() said “No,” what would that mean? Should the program
continue using the memory area or not? Could it reasonably expect the next call to malloc() to
work?

“Returning an error” is sensible when an operation might reasonably fail in plausible, non-
emergency circumstances and where higher-level code can do something sensible to recover, or at
least has a reasonable chance to explain to a higher authority what went wrong. If an operation
cannot fail in reasonable circumstances (i.e., a failure means the computational state is irrevocably
broken) and there is no reasonable way for higher-level code to do anything reasonable, other
approaches are required, and void functions may be reasonable.

Note well that the author of a void function bears the responsibility of designing the
implementation in such a way that the code fails only in “impossible” situations. This may
require the author to design other parts of the code to take on extra responsibilites so the “must
work reliably” functions are indeed reliable.

Note further that a void return type is a contractual specification that when the function
returns the documented action will have been completed successfully. Said another way, if some
circumstance prevents a void function from acting as specified, it cannot return.

Some of the thread-library interface functions below are declared as void functions. In each
case, you will need to list possible failure cases and think through them. The function will need
to work in all “might reasonably happen” situations and do something reasonable if it discovers
that the computation is irretrievably broken. You will generally need to consider and trade off the
cost of checking for a particular bad situation against how bad it would be to leave the situation
undetected. For more guidance, refer to the “Errors” lecture.

5.2 “Illegal”

At several points in this document you will encounter language similar to this: “It is illegal for
an application to ...” The meaning of “illegal” involves both subtlety and judgment. Consider
the meaning and implications of a typical real-world illegality situation: it is illegal to litter in a
park. That probably means:

• There is general agreement that reasonable people will not litter in the park,

• Any single instance of a person littering in the park may result in a penalty,

4

• The park management invests some resources in detecting, apprehending, and penalizing
littering, and

• The park management also invests some resources in making it easy for visitors to dispose
of rubbish without littering.

It probably does not mean:

• Littering in the park never happens,

• Every single instance of a person littering in the park results in a lifetime prison sentence
for the person, or

• The park management focuses so much on litter prevention that all the plants die and the
play equipment decays into unusability.

For more guidance, refer to the “Questions” lecture and the “Errors” lecture. Also see
Section 8.1.

5.3 Thread Management API

• int thr init(unsigned int size) - This function is responsible for initializing the
thread library. The argument size specifies the amount of stack space which will be available
for each thread using the thread library.

This function returns zero on success, and a negative number on error.

The thread library can assume that programs using it are well-behaved in the sense that
they will call thr init(), exactly once, before calling any other thread library function
(including memory allocation functions in the malloc() family, described below) or invoking
the thread fork system call. Also, you may assume that all threads of a task using your
thread library will call thr exit() instead of directly invoking the vanish() system call
(and that the root thread will call thr exit() instead of return()’ing from main()).

• int thr create(void *(*func)(void *), void *arg) - This function creates a new
thread to run func(arg). This function should allocate a stack for the new thread and then
invoke the thread fork system call in an appropriate way. A stack frame should be created
for the child so that the indicated thread-body function is run appropriately. On success
the thread ID of the new thread is returned, on error a negative number is returned.

You should pay attention to (at least) two stack-related issues. First, the stack pointer
should essentially always be aligned on a 32-bit boundary (i.e., %esp mod 4 == 0). Second,
you need to think very carefully about the relationship of a new thread to the stack of the
parent thread, especially right after the thread fork system call has completed.

• int thr join(int tid, void **statusp) -

This function “cleans up” after a thread, optionally returning the status information
provided by the thread at the time of exit.

The target thread tid may or may not have exited before thr join() is called; if it has
not, the calling thread will be suspended until the target thread does exit.

5

If statusp is not NULL, the value passed to thr exit() by the joined thread will be placed
in the location referenced by statusp.

Only one thread may join on any given target thread. Other attempts to join on the same
thread should return an error promptly. If thread tid was not created before thr join(tid)

was called, an error will be returned.

This function returns zero on success, and a negative number on error.

• void thr exit(void *status) - This function exits the thread with exit status status.
If a thread other than the root thread returns from its body function instead of calling
thr exit(), the behavior should be the same as if the function had called thr exit()

specifying the return value from the thread’s body function.

Note that status is not a “pointer to a void.” It is frequently not a pointer to anything
of any kind. Instead, status is a pointer-sized opaque data type which the thread library
transports uninterpreted from the caller of thr exit() to the caller of thr join().

• int thr getid(void) - Returns the thread ID of the currently running thread.

• int thr yield(int tid) - Defers execution of the invoking thread to a later time in
favor of the thread with ID tid. If tid is -1, yield to some unspecified thread. If the thread
with ID tid is not runnable, or doesn’t exist, then an integer error code less than zero is
returned. Zero is returned on success.

Note that the “thread IDs” generated and accepted by your thread library routines (e.g.,
thr getid(), thr join()) are not required to be the same “thread IDs” which are generated and
accepted by the thread-related system calls (e.g., thread fork, gettid(), make runnable()).
If you think about how you would implement an “M:N” thread library,1 or a user-space thread
library, you will see why these two name spaces cannot always be the same. Whether or not you
use kernel-issued thread ID’s as your thread library’s thread ID’s is a design decision you will
need to consider.

However, you must not aggressively recycle thread ID’s, as this significantly reduces the
utility of, e.g., thr yield().

5.4 Mutexes

Mutual exclusion locks prevent multiple threads from simultaneously executing brief critical
sections of code. To implement mutexes you may use the XCHG instruction documented on page
3-714 of the Intel Instruction Set Reference. For more information on the behavior of mutexes,
feel free to refer to the text, or to the Solaris or Linux pthread mutex init() manual page.

• int mutex init(mutex t *mp) - This function should initialize the mutex pointed to by
mp. It is illegal for an application to use a mutex before it has been initialized or to initialize
one when it is already initialized and in use. This function returns zero on success, and a
negative number on error.

1 You probably aren’t.

6

• void mutex destroy(mutex t *mp) - This function should “deactivate” the mutex
pointed to by mp. It is illegal for an application to use a mutex after it has been destroyed
(unless and until it is later re-initialized). It is illegal for an application to attempt to
destroy a mutex while it is locked or threads are trying to acquire it.

• void mutex lock(mutex t *mp) - A call to this function ensures mutual exclusion in the
region between itself and a call to mutex unlock(). A thread calling this function while
another thread is in an interfering critical section must not proceed until it is able to claim
the lock.

• void mutex unlock(mutex t *mp) - Signals the end of a region of mutual exclusion. The
calling thread gives up its claim to the lock. It is illegal for an application to unlock a mutex
that is not locked.

For the purposes of this assignment, you may assume that a mutex should be unlocked only
by the thread that most recently locked it.2

5.5 Condition Variables

Condition variables are used for waiting, for a while, for mutex-protected state to be modified by
some other thread(s). A condition variable allows a thread to voluntarily relinquish the CPU so
that other threads may make changes to the shared state, and then tell the waiting thread that
they have done so. If there is some shared resource, threads may de-schedule themselves and be
awakened by whichever thread was using that resource when that thread is finished with it. In
implementing condition variables, you may use your mutexes, and the system calls deschedule()
and make runnable(). For more information on the behaviour of condition variables, you may
refer to the Solaris or Linux documentation on pthread cond wait().

• int cond init(cond t *cv) - This function should initialize the condition variable
pointed to by cv. It is illegal for an application to use a condition variable before it has
been initialized or to initialize one when it is already initialized and in use. This function
returns zero on success, and a negative number on error.

• void cond destroy(cond t *cv) - This function should “deactivate” the condition
variable pointed to by cv. It is illegal for an application to use a condition variable after it
has been destroyed (unless and until it is later re-initialized). It is illegal for an application
to invoke cond destroy() on a condition variable while threads are blocked waiting on it.

• void cond wait(cond t *cv, mutex t *mp) - The condition-wait function allows a
thread to wait for a condition and release the associated mutex that it needs to hold to check
that condition. The calling thread blocks, waiting to be signaled. The blocked thread may
be awakened by a cond signal() or a cond broadcast(). Upon return from cond wait(),
*mp has been re-acquired on behalf of the calling thread.

• void cond signal(cond t *cv) - This function should wake up a thread waiting on the
condition variable pointed to by cv, if one exists.

2Opinions differ, but you might want to wait until after the scheduling lecture(s) before solidifying yours.

7

• void cond broadcast(cond t *cv) - This function should wake up all threads waiting
on the condition variable pointed to by cv.

Note that cond broadcast() should not awaken threads which may invoke cond wait(cv)

“after” this call to cond broadcast() has begun execution.3

When designing your condition-variable implementation, your first priority should be a
solution that correctly and efficiently solves the thread-blocking/thread-awakening problem in
an “effectively atomic” or thread-safe fashion, via a mixture of careful design on the one hand
and experience with test code on the other hand (at least our test code; ideally some of yours as
well).

Once you have achieved that, if time permits, we encourage you to consider what happens
if a synchronization primitive other than your condition variables uses the same synchronization
system calls. For example, will your condition-variable implementation work correctly if a thread
sometimes blocks on a condition variable and at other times blocks on a barrier object, something
similar to java.util.concurrent.CountDownLatch, implemented in terms of the same system
calls? This is a tricky design problem4 which should be solved for full credit, but we explicitly
advise you to attempt it only after getting a condition-variable solution completely done and
passing all Project 2 tests.

5.6 Semaphores

As discussed in class, semaphores are a higher-level construct than mutexes and condition
variables. Implementing semaphores on top of mutexes and condition variables should be a
straightforward but hopefully illuminating experience.

• int sem init(sem t *sem, int count) - This function should initialize the semaphore
pointed to by sem to the value count. It is illegal for an application to use a semaphore
before it has been initialized or to initialize one when it is already initialized and in use.
This function returns zero on success and a number less than zero on error.

• void sem destroy(sem t *sem) - This function should “deactivate” the semaphore
pointed to by sem. It is illegal for an application to use a semaphore after it has been
destroyed (unless and until it is later re-initialized). It is illegal for an application to invoke
sem destroy() on a semaphore while threads are waiting on it.

• void sem wait(sem t *sem) - The semaphore wait function allows a thread to decrement
a semaphore value, and may cause it to block indefinitely until it is legal to perform the
decrement.

• void sem signal(sem t *sem) - This function should wake up a thread waiting on
the semaphore pointed to by sem, if one exists, and should update the semaphore value
regardless.

3If that sounds a little fuzzy to you, you’re right–but if you think about it a bit longer it should make sense.
4The ideal situation is for your condition-variable implementation to satisfy the language found in 47 CFR

§ 15.19(a)(3), namely: “This device complies with part 15 of the FCC Rules. Operation is subject to the following
two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesired operation.”

8

5.7 Readers/writers locks

Readers/writers locks allow multiple threads to have “read” access to some object simultaneously.
They enforce the requirement that if any thread has “write” access to an object, no other thread
may have either kind of access (“read” or “write”) to the object at the same time. These types
of locking behaviors are often called “shared” (for readers) and “exclusive” (for writers) locks.

The generic version of this problem is called the “readers/writers problem.” Two standard
formulations of the readers/writers problem exist, called unimaginatively the “first” and “second”
readers/writers problems. In the “first” readers/writers problem, no reader will be forced to wait
unless a writer has already obtained an exclusive lock. In the “second” readers/writers problem,
no new reader can acquire a shared lock if a writer is waiting. You should think through the
reasons that these formulations allow starvation of different access types; starvation of writers
in the case of the “first” readers/writers problem and starvation of readers in the case of the
“second” readers/writers problem.

In addition to a correct implementation of shared and exclusive locking, we expect you to
implement a solution that is “at least as good as” a solution to the “second” readers/writers
problem. That is, your solution should not allow starvation of writers. Your solution need not
strictly follow either of the above formulations: it is possible to build a solution which does not
starve any client. No matter what you choose to implement, you should explain what, how, and
why.

You may choose which underlying primitives (e.g., mutex/cvar or semaphore) you use to
implement readers/writers locks. Once again, you should explain the reasoning behind your
choice.

• int rwlock init(rwlock t *rwlock) - This function should initialize the lock pointed
to by rwlock. It is illegal for an application to use a readers/writers lock before it has been
initialized or to initialize one when it is already initialized and in use. This function returns
zero on success and a number less than zero on error.

• void rwlock destroy(rwlock t *rwlock) - This function should “deactivate” the lock
pointed to by rwlock.

It is illegal for an application to use a readers/writers lock after it has been destroyed (unless
and until it is later re-initialized). It is illegal for an application to invoke rwlock destroy()

on a lock while the lock is held or while threads are waiting on it.

• void rwlock lock(rwlock t *rwlock, int type) - The type parameter is required to
be either RWLOCK READ (for a shared lock) or RWLOCK WRITE (for an exclusive lock). This
function blocks the calling thread until it has been granted the requested form of access.

• void rwlock unlock(rwlock t *rwlock) - This function indicates that the calling
thread is done using the locked state in whichever mode it was granted access for. Whether
a call to this function does or does not result in a thread being awakened depends on the
situation and the policy you chose to implement.

It is illegal for an application to unlock a readers/writers lock that is not locked.

• void rwlock downgrade(rwlock t *rwlock) - A thread may call this function only if it
already holds the lock in RWLOCK WRITE mode at a time when it no longer requires exclusive

9

access to the protected resource. When the function returns: no threads hold the lock in
RWLOCK WRITE mode; the invoking thread, and possibly some other threads, hold the lock
in RWLOCK READ mode; previously blocked or newly arriving writers must still wait for the
lock to be released entirely. During the transition from RWLOCK WRITE mode to RWLOCK READ

mode the lock should at no time be unlocked. This call should not block indefinitely.5

Note: as readers/writers locks are a “classic problem” (and widely used in systems-related
code), the Internet is full of solutions (good and bad) to various versions of the problem. Please
recall that this is a design class, not a copy-and-paste class. We believe it is feasible and very
educational for you to design readers/writers locks yourself, “from scratch.” If you consult external
sources for inspiration, you must do so in compliance with the terms of the syllabus (which you are
required to read). Furthermore, the score we assign your readers/writers submission will depend
on the insight you demonstrate. A zero-insight-added copy-and-paste from an online source,
especially one which does not fulfill the requirements of our version of the problem, is likely to
receive a zero (or even negative) score. Even worse, turning in code you don’t understand is very
unlikely to be a good way to prepare for exams.

Note: We will not grade your readers/writers implementation unless your thread library passes
a specified series of tests; see Section 12.

5.8 Safety & Concurrency

Please keep in mind that much of the code for this project must be thread safe. In particular the
thread library itself should be thread safe. However, by its nature a thread library must also be
concurrent. In other words, you may not solve the thread-safety problem with a hammer, such as
using a global lock to ensure that only one thread at a time can be running thread library code.
In general, it should be possible for many threads to be running each library interface function
“at the same time.”

As you design your library, your model should be that some system calls “take a while to run.”
You should try to avoid situations where “too many” threads are waiting “too long” because of
this. This paragraph provides a design hint, not implementation rules: acting on it will require
you to think about system calls and the meanings of “too many” and “too long.”

5.9 Distribution Files

To begin working on the project, fetch and unpack the tarball posted on the course web page.
Please read the README included therein.

6 Documentation

For each project in 15-410, functions and structures should be documented using doxygen.
Doxygen uses syntax similar to Javadoc. The Doxygen documentation can be found on the
course website. The provided Makefile has a target called html doc that will invoke doxygen on
the source files listed in the Makefile.

5We do not ask you to implement this function’s partner, “rwlock upgrade()”—and for good reason! See if you
can figure out why.

10

While Doxygen allows functions to be commented either in header files or with the source
code, it is the observation of the course staff that Doxygen comments that are with the source
code are more likely to be up-to-date with the code.

7 Thread Group Library

A commonly used program paradigm involves one or more manager threads overseeing the
completion of a large task which has been split into parts assigned to a pool of worker threads.
Examples of this model include databases, Apache, and Firefox. Once a worker thread has
completed its job, it exits; manager threads dispatch new worker threads based on system load,
new requests, and the results obtained by previous worker threads. In this environment it is not
convenient for a manager to know which particular worker thread it should next call thr join()

on; instead it is convenient to wait until the next thread in the worker pool completes.

We have provided you with a simple library implementing “thread groups.” This library
essentially provides an abstraction layer above the thread library you will write–a compliant
program will use thrgrp create() and thrgrp join() instead of calling thr create() and
thr join() directly.

These functions and their requisite data structures are defined in 410user/libthrgrp/thrgrp.c
and 410user/libthrgrp/thrgrp.h.

• thrgrp group t

A structure representing a thread group.

• thrgrp init group(thrgrp group t *tg)

This function initializes a thread group. It must be called before the thread group is used
for anything. Returns 0 on success, non-zero otherwise.

• thrgrp destroy group(thrgrp group t *tg)

This function destroys a thread group, cleaning up all of its memory. This should be called
if a thread group isn’t to be used further. The effects of using a thread group after it has
been destroyed are be undefined. Returns 0 on success, non-zero otherwise.

• thrgrp create(thrgrp group t *tg, void *(*func)(void *), void *arg)

This function spawns a new thread (analogous to thr create()) in the threadgroup tg.
The spawned thread must not call thr exit(). Instead, func() should return an exit code
(of type void *) which will be made available to a manager thread.

Returns 0 on success, non-zero otherwise.

• thrgrp join(thrgrp group t *tg, void **statusp)

If there are any unreaped threads in the thread group tg then it will reap one of them,
setting *statusp appropriately, and return. If there are no unreaped threads in the group,
it will block until one does exit, reap it, and return.

8 The C Library

This is simply a list of the most common library functions that are provided. For details on using
these functions please see the appropriate man pages.

11

Other functions are provided that are not listed here. Please see the appropriate header files
for a full listing of the provided functions.

Some functions typically found in a C I/O library are provided by 410user/libstdio.a. The
header file for these functions is 410user/libstdio/stdio.h, aka #include <stdio.h>.

• int putchar(int c)

• int puts(const char *str)

• int printf(const char *format, ...)

• int sprintf(char *dest, const char *format, ...)

• int snprintf(char *dest, int size, const char *formant, ...)

• int sscanf(const char *str, const char *format, ...)

• void lprintf(const char *format, ...)

Note that lprintf() is the user-space analog of the lprintf kern() you used in Project 1.

Some functions typically found in various places in a standard C library are provided by
410user/libstdlib.a. The header files for these functions are stdlib.h, assert.h, and
ctype.h.

• int atoi(const char *str)

• long atol(const char *str)

• long strtol(const char *in, const char **out, int base)

• unsigned long strtoul(const char *in, const char **out, int base)

• void assert(int expression)

We are providing you with non-thread-safe versions of the standard C library memory
allocation routines. You are required to provide a thread-safe wrapper routine with the appropriate
name (remove the underscore character) for each provided routine. These should be genuine
wrappers, i.e., do not copy and modify the source code for the provided routines.

• void * malloc(size t size)

• void * calloc(size t nelt, size t eltsize)

• void * realloc(void *buf, size t new size)

• void free(void *buf)

You may assume that no calls to functions in the “malloc() family” will be made before the
call to thr init().

These functions will typically seek to allocate memory regions from the kernel which start at
the top of the data segment and proceed to grow upward. You will thus need to plan your use of
the available address space with some care.

Some functions typically found in a C string library are provided by 410user/libstring.a.
The header file for these functions is 410user/libstring/string.h.

12

• int strlen(const char *s)

• char *strcpy(char *dest, char *src)

• char *strncpy(char *dest, char *src, int n)

• char *strdup(const char *s)

• char *strcat(char *dest, const char *src)

• char *strncat(char *dest, const char *src, int n)

• int strcmp(const char *a, const char *b)

• int strncmp(const char *a, const char *b, int n)

• void *memmove(void *to, const void *from, unsigned int n)

• void *memset(void *to, int ch, unsigned int n)

• void *memcpy(void *to, const void *from, unsigned int n)

8.1 Assertions

8.1.1 assert()

Our C library includes the well-known assert() macro, which—sometimes—verifies that a
specified expression evaluates to true and crashes the program if instead it’s false. However, in
compliance with relevant standards, the assert() macro we provide does nothing if the NDEBUG

preprocessor symbol is defined (see assert.h). As a convenience, you can adjust the value of
NDEBUG via the CONFIG NDEBUG directive in config.mk, without needing to make changes to your
source code.

8.1.2 contracts.h

Our C library also includes the “15-122 contracts.h macros” (ASSERT(), REQUIRES(), and
ENSURES()). According to the practice model of 15-122, the predicates checked by those macros
may be so computationally expensive as to preclude their evaluation during normal use of the
code base—for example, a module-internal consistency predicate might take O(N2) time to check
invariants of a data structure whose operations take O(log(N)) time. Thus the contracts.h

checks are expected to be active only while debugging your code, as denoted by the definition of
the DEBUG preprocessor symbol (see contracts.h). As a convenience, you can adjust the value
of DEBUG via the CONFIG DEBUG directive in config.mk, without needing to make changes to your
source code.

8.1.3 “Production code”

Some students arrive in this class with the correct understanding that low-level system code
has debugging builds and production builds, but also with the—vastly mistaken—belief that
production builds have all error checking disabled. However, “production” use of your code

13

should include some error checking, especially at module boundaries, even if assert() and/or
the contracts.h macros are unused or disabled.

To that end, we have extended assert.h with four macros that always evaluate the specified
expressions, regardless of “debug settings,” and tastefully invoke panic() as required.

Examples:

• affirm(3 > 0);

• affirm msg(3 > 0, "arithmetic broken around %d and %d", 3, 0);

• reject(0 > 3);

• reject msg(0 > 3, "arithmetic broken around %d and %d", 0, 3);

In Project 2 you will be reading, and optionally writing, user-space application code, and you
will be writing hopefully-robust user-space library code. We expect you to apply the “Errors”
lecture, the “Questions” lecture, Section 5.1, and Section 5.2 while selecting between/among
assert(), the contracts.h macros, affirm()/reject(), and panic().

9 Debugging Support Code

The same MAGIC BREAK macro which you used in Project 1 is also available to user code in Project 2
if you #include the 410user/libsimics/simics.h header file.

The function call lprintf() may be used to output debugging messages from user programs.
Its prototype is in 410user/libsimics/simics.h.

Also, user code can be symbolically debugged using the Simics symbolic debugger. If you
restrict yourself to debugging with printf() it may cost you significant amounts of
time.

10 Build Options

As was the case in Project 1, you may select among compilation alternatives by editing the CC

directive in config.mk. As in Project 1, using more compiler variants may result in finding more
bugs.

Also in config.mk, you can use CONFIG DEBUG to enable/disable the contracts.h macros and
CONFIG NDEBUG to enable/disable assert().

From time to time, the course staff may release alternate reference-kernel binaries, which
will be found in 410kern. If we release a reference kernel called xxx, the binary will be
410kern/kernel xxx.o and you can build your thread library against that kernel by placing
a line of the form REFK=xxx in your config.mk file. When we grade your submission we will
disable your REFK selection if you have made one.

10.1 “SMPathos” reference kernel

At times students wish to investigate how their thread-library code runs on a multi-processor
machine. Two options are available.

14

1. In the hallway outside Professor Eckhardt’s office there is a “crash box” upon which you can
run your code, documented on the Projects web page. The crash box has two processors,
so in theory it is able to perform amazing feats of multithreading (limited sometimes in
practice by the fact that the graphics hardware is pretty slow).

2. A special configuration of Simics, simics46smpathos, can run your code on a machine
with up to eight simulated cores. Debugging may be a little more complicated. You can
use pselect cpu2 to switch the debugger’s attention to CPU 2, and you can also prefix
many commands with a CPU name, e.g., cpu1.bt to examine the stack on CPU 1. You
can increase the number of processors above the default of four by setting an environment
variable, SIMICS NUM CPUS, to a number between five and eight.

Running your thread library on a multi-processor machine won’t result in different behavior
unless the kernel sitting between your thread library and the hardware launches all of the
processors and simultaneously schedules threads onto multiple processors. Dr. Michael Sullivan,
a former OS TA and CMU CSD alumnus who is a world expert on 15-410 reference kernels, has
graciously provided an SMP version of the P2 reference kernel.

You should spend zero time experimenting with running your thread library on multiple
processors unless your P2 is essentially done. If you have some spare time for an experiment, you
can try it out by:

1. Adding REFK=smpathos to your config.mk and running make

2. Booting the resulting bootfd.img on the crash box or via simics46smpathos.

Please do not try this before your thread library is solid (as far as you can tell): debugging
is easier with a single-processor kernel, and if you run into trouble with SMPathos it is actually
possible that the trouble will be due to a bug in it rather than a bug in your thread library.

If you do have time to try SMPathos, we will be thrilled by reports of the form “We thought
our thread library was 100% done, but as soon as we tried SMPathos our code blew up and we
found a subtle race condition in our lock-free transactional concurrent green-purple splay treap.”

But if you send us a report like “With regular Pathos, agility drill was crashing, but when
we tried SMPathos it hangs instead—why would that be?” we just won’t know; honestly, you
probably shouldn’t have spent the time to try SMPathos, because you almost certainly should
have spent that time debugging the agility drill crash you already had in hand.

11 Submission Inventory

Implement the functions for automatic stack growth, system-call stub routines, the thread library,
and concurrency tools conforming to the documented APIs. Hand in all source files that you
generate, in ready-to-build form, in accordance with the directions found on the hand-in web
page. Be sure to provide a design description in README.dox, including an overview of existing
issues and any interesting design decisions you made. Any use of, or reliance on, outside
code must be in accordance with course policy as stated in the syllabus.

15

12 Grading Criteria

You will be graded on the completeness and correctness of your project. A complete project is
composed of a reasonable attempt at each function in the API. Also, a complete project follows
the prescribed build process, and is well documented. A correct project implements the provided
specification. Also, code using the API provided by a correct project will not be killed by the
kernel, and will not suffer from inconsistencies due to concurrency errors in the library. Please
note that there exist concurrency errors that even carefully-written test cases may not expose.
Read and think through your code carefully. Do not forget to consider pathological cases.

The most important parts of the assignment to complete are the thread management, mutex,
and condition variable calls. These should be well-designed, solidly implemented, and thoroughly
tested with misbehave() (see below). It is probably unwise to devote substantial coding effort
to the other parts of the library before the core is reliable. In particular, we will not grade
readers/writers implementations for Project 2 submissions which do not pass the “hurdle” subset
of the test suite (see the project web page for details).

Because a thread library is designed to support the activities of multiple threads, concurrency
(the ability to get more than one thing done at a time) is important. As you do your design,
ask yourself which things your thread library can accomplish in parallel. You may tune your
code, especially your locking code, based on the assumption that it will run on a uni-processor
machine. However, if we were to run your kernel on a multi-processor machine instead, the core
of the thread library shouldn’t artificially limit concurrency–if there were four processors, threads
running on top of your thread library should be able to use all four productively most of the time.
Another way to think about this is that on a uni-processor machine the timer and the kernel
scheduler determine when thread execution is interleaved; if the structure of your thread library
results in much less concurrency (interleaving) than the kernel provides, something isn’t right.

Because a thread library is core software for an application, it should behave responsibly with
respect to error conditions and should not leak or unwisely over-consume resources.

Finally, code that is robust doesn’t randomly refuse to perform its job. It is not really robust
for mutex lock() to refuse to lock something because it can’t allocate memory, and it is downright
unreasonable for cond wait() to refuse to block a thread because of a memory-allocation problem:
what’s the caller supposed to do—keep running? These and similar operations should do their
jobs in a prompt and reliable manner.

Important note: if you don’t carefully apply the material found in the code-quality and thread-
synchronizations lectures, it is possible to lose up to two letter grades on this assignment,
even if your thread library passes all of the tests we provide. Code that “runs ok” in the
expected/common case may completely fail to meet the robustness standards of the class.

12.1 “Spin Locks”

Try to avoid tricking yourself via use of the term “spin lock.” It is probably unwise to believe
that:

• any locking code which contains a loop is a “spin lock”, and

• of course any lock needs to have at least one loop, and

• people excitedly talk about “spin locks” in the hallways,

16

...so therefore any locking code you write is a “spin lock” and thus fine by definition.

Whether your locking code is looked on favorably or not will depend on what it does, not
what you call it—except that if you call code something it genuinely isn’t your grader may find
a way to take a minor deduction.

13 Debugging

13.1 Requests for Help

Please do not ask for help from the course staff with a message like this:

The kernel is killing my threads! Why?

or

Why is my program stuck in malloc()?

An important part of this class is developing your debugging skills. In other words, when you
complete this class you should be able to debug problems which you previously would not have
been able to handle.

Thus, when faced with a problem, you need to invest some time in figuring out a way to
characterize it and close in on it so you can observe it in the actual act of destruction. Your reflex
when running into a strange new problem should be to start thinking, not to start off by asking
for help.

Having said that, if a reasonable amount of time has been spent trying to solve a problem and
no progress has been made, do not hesitate to ask a question. But please be prepared with a list
of details and an explanation of what you have tried and ruled out so far.

13.2 Warning

When making design decisions, beware of basing them on how long it takes Simics to execute your
code. Because Simics is a simulator, it inherently runs some of your code much slower than a real
machine would, but in the other direction it employs various heuristics to accelerate other parts
of your code so they run much faster than a real machine would. Unfortunately, this means that
if you wish to use measured execution time to support a design decision you must measure that
execution time when running directly on real hardware, not on any simulation or virtualization
framework.

13.3 Debugging Strategy

In general, when confronted by a mysterious problem, you should begin with a “story” of what
you expect to be happening and measure the system you’re debugging to see where its behavior
diverges from your expectations.

To do this your story must be fairly detailed. For example, you should have a fairly good
mental model of the assembly code generated from a given line of C code. To understand why “a
variable has the wrong value” you need to know how the variable is initialized, where its value is

17

stored at various times, and how it moves from one location to another. If you’re confused about
this, it is probably good for you to spend some time with gcc -S.

Once your “story” is fleshed out, you will need to measure the system at increasing levels of
detail to determine the point of divergence. You will find yourself spending some time thinking
about how to pin your code down to observe whether or not a particular misbehavior is happening.
You may need to write some code to periodically test data-structure consistency, artificially cause
a library routine to fail to observe how your main code responds, log actions taken by your code
and write a log-analyzer perl script, etc.

Don’t forget about the debugger. In particular, any time you find yourself “stuck,” please
review the course web site’s page listing useful debugger commands. If you are “stuck,” it is fairly
likely that you should use one or two debugger commands that you have never used before. As
you proceed through this class you are likely to encounter problems you have not encountered
before; it is unwise to restrict yourself to using only old tools while trying to solve new problems.

When you encounter a fault or exception, you must determine three key pieces of information:

1. You must determine which instruction (not “line of code”) can’t be executed. Processors
don’t execute “lines of code”; they execute instructions.

2. Based on the surrounding code, determine what that instruction was intended to accomplish.
Generally speaking, the instruction was selected by a compiler, based on preconditions
expected to be true before the instruction executes and on conditions desired to be true
after it’s done. It is possible you will need to look up a description of exactly what the
instruction does.

3. You will need to determine exactly why the instruction could not be executed. Generally
speaking, some precondition isn’t true, or some input value is wrong. Depending on the
exception, the processor may write down some information about this particular execution
failure; you will need to consult appropriate documentation to find what information is
available and how to decode it. It is unwise to guess at which precondition/value is the
source of the problem.

Please note that the user-space memory allocator we provide you with is very similar to the
allocator written by 15-213 students in the sense that errors reported by the allocator, or program
crashes which take place inside the allocator, are likely to mean that the user of some memory
overflowed it and corrupted the allocator’s meta-data. In the other direction, complaints by
“lmm” are coming from the kernel’s memory allocator, and probably indicate kernel bugs (see
below).

13.4 Reference Kernel Panics and Crashes

If the Pebbles kernel tells you something went horribly wrong and drops you into the debugger,
don’t panic. It probably won’t happen to most of you, but we are fully aware that we haven’t
nailed the last bug yet...

It’s probably a good idea for you to tar up your working directory and make a brief note
of what you were doing when the kernel ran into trouble. For example, what sequence of test
programs had you run since boot? If you have a short repeatable way of getting the kernel to die,

18

that’s excellent, and we’d appreciate a snapshot that lets us reproduce it, even if you then go on
to modify your code to make the crash go away.

To send us a snapshot, tar it up somewhere in your group’s scratch directory,

tar cfz .../mygroup/scratch/kcrash.somename.tgz .

create a brief summary of how to reproduce it,

$EDITOR .../mygroup/scratch/kcrash.somename.README

and send a brief note to the staff mailing list. While such an event will of course attract our
attention, it’s not likely that we can provide a fix in a small number of minutes...you may need
to try to guess what went wrong and work around it temporarily, or work on some other part of
your project for a while.

14 Strategy

14.1 Suggestions

First, this may be the first time you have written code with this variety and density of concurrency
hazards. If so, you will probably find this code much harder to debug than code you’ve written
before, i.e., you should allocate more debugging time than usual. Of course, the silver lining in
this cloud is that experience debugging concurrent code will probably be useful to you after you
leave this class.

Second, several of the thread library functions are much harder then they first appear. It is
fairly likely that you will write half the code for a thread library function before realizing that
you’ve never written “that kind of code” before. When this happens the best course of action is
probably to come to a complete stop, think your way through the problem, and then explain the
problem and your proposed solution to your partner. It may also happen that as you write your
fifth function you realize your second must be scrapped and re-written.

Third, the Pebbles kernel offers a feature intended to help you increase the solidity of your
code. A special system call, void misbehave(int mode), alters the behavior of the kernel
in ways which may expose unwarranted assumptions or concurrency bugs in your library code.
Values for mode range from zero (the default behavior) to sixty-three (or maybe higher—see the
test code), or you may select -1 for behavior which may be particularly challenging. As you
experiment with misbehave(), you may become able to predict or describe the behavior of a
particular mode. Each group must keep confidential its own understanding of the meanings of
particular mode values.

Fourth, we recommend against splitting the assignment into two parts, working separately until
the penultimate day, and then meeting to “put the pieces together.” Instead, we recommend the
opposite, namely that you make it a habit to read and talk about each other’s code every few
days. You may encounter an exam question related to code your partner wrote, so
when you “read” your partner’s code, the reading should be sufficiently vigorous to
find bugs.

Fifth, we have observed that a particularly bad division of labor is for one person to write
system call stubs, linked lists, queues, and maybe semaphores, while the other person writes
everything else. This puts the first person at risk of doing poorly on exams.

19

Sixth, instead of typing linked-list traversal code 100 times throughout your library, thus firmly
and eternally committing yourselves to a linear-time data structure, give some consideration to
encapsulation. One approach is mentioned in Section 14.3.6.

Seventh, we strongly recommend that you use a source-control system to manage the
evolution and/or devolution of your code. While the complexity of this project does not outright
necessitate the use of source control, this is a good opportunity for you to get used to it and set
up a work flow with your partner. No matter how busy you are now, you will be even busier
during the kernel project, when source control will be even more important to your success than
it is now. As a result, deciding not to use source control for this project may equate to giving up
a letter grade on the kernel project.

Eighth, don’t forget to do an update when make starts beeping at you. If you’re in the middle
of debugging a problem, you probably don’t want to switch kernels, but you generally do want to
upgrade when we issue new things, because we do so to help. A particularly bad thing to do is to
work on your thread library for two weeks using the very oldest kernel and then 15 minutes before
the assignment deadline switch to the very newest one and find that one time in a thousand you
call new pages() in an improper way which got through before and doesn’t any more. So don’t
do that. The update process gives you the power to decide when to import changes, but that
means the responsibility lies with you as well.

Ninth, speaking of the last minute, please avoid breaking your entire thread library in a
frantic last-minute merge maneuver. A popular way to do this is for one person to debug some
problem up until the last minute while another person rampages through the entire source tree
fixing documentation, deleting dead code, and making code tweaks; then everything is dumped
together and submitted. Very frequently this results in a submission which won’t build, or
which builds but won’t boot, or which builds and boots but fails many tests; meanwhile, most
of the documentation “fixes” are neutral or harmful. Untangling this sort of situation is very
difficult because what’s wrong will be one or two small changes buried among 150 other small
changes. Probably the best way to avoid this scenario is to schedule a brief documentation and
cleanup session for the first 15 to 30 minutes of time on each work day ; naturally, it is best if
your code changes and documentation changes are independent commits. Regardless, it is known
that last-minute mega-merge mania usually fails; please don’t try it to see whether it works out
well for you.

Tenth, if you find yourself confused about what is meant when the kernel specification or
the thread-library handout says “before,” try to imagine what “before” might mean on a multi-
processor machine.

Finally, we have observed that the single most effective decision a group can make is to
schedule standing “work meetings” of one or two hours duration two or three times per week. It
is important that these be at fixed times each week agreed upon in advance (just like a class).
Groups that do this consistently do better on the thread library and kernel projects than groups
who don’t.

14.2 Suggested Steps

1. Read the handouts. We believe that you should print both of them out (all the way onto
paper!), read the Pebbles kernel specification from start to finish, then read this thread-
library handout from start to finish, then most likely go back and read the Pebbles kernel
specification again. Whether or not you print the handouts all the way onto paper, we

20

believe that “reading” them should result in extensive notes, whether those notes take the
form of document markup or items on a group todo list.

2. Agree on two to three meeting times per week. An excellent thing to discuss early on is
what source control system to use. By the way, make sure you configure it to not track
changes to large random files such as bootfd.img, bootfd.gz, user apps.S, the contents
of temp/, etc., or your disk quota will be consumed very quickly.

3. Be sure to review the syllabus material on collaboration and the use of outside code.
Seriously, please right now stop reading this list and go read that material, even if you
read it before.

4. It is probably a good idea to acquire some practice with the “May we assume?” protocol
from the “Questions” lecture by applying the protocol to at least a couple of the “may
assume” statements found in this document.

5. Carefully review the comments in config.mk. That file contains information that will be
useful to you while developing your code, and also information that you will need to know
for your code to be graded successfully.

6. Promptly write system call wrappers for one or two system calls and run a small test
program using those system calls. This is probably the best way to engage yourself in
the project and to get an initial grasp of its scope. Good system calls to begin with are
set status() and vanish(), since the C run-time start-up code invokes the exit() library
routine, which depends on them. A good second step would be print().

7. Write the remaining system call wrappers (with the exception of thread fork, of course).

8. If you’re using revision control, make sure your repositories are private (readable by only
you, your partner, and optionally the members of the course staff). Be careful: some popular
project-hosting web sites require all repositories to be public, and they will automatically
publish your code on various search engines even if you do not explicitly publish it. Also
note that some “web clipboard” services, e.g., pastebin.com, default to publicizing any
content you share through/with them; search engines will eventually pick up and index that
content. Be careful out there! Meanwhile, note that your group’s course AFS space contains
a REPOSITORY directory which can be used as a central point when you’re logged in to an
Andrew Linux machine... and can even be accessed remotely with a smidgin of hacking, see
410/pub/dotssh-slash-rc.

9. If you’re not using revision control, you should be.

10. Read at least half of the test code we have provided. Doing this early can avoid potentially-
costly last-minute discoveries of misunderstandings.

11. Design and make a draft version of mutexes and condition variables. In order to do that,
you will probably need to perform a hazard analysis of which code sequences in your thread
library would suffer if the scheduler switched from executing one of your threads to another.
For mutexes in particular, please do not “start from infinity,” by which we mean designing
the best possible mutex you can imagine before you implement anything at all. It is much
better to implement “ok mutexes” or “pretty good mutexes” so you can get started on other
things. You can revisit your mutex design later.

21

12. Now would not be a bad time to read the source to the “thread group” library (Section 7).
If you read the source code we provide before “debugging time,” it may help you do a better
design, and thus need to do less debugging. Now would also probably be a good time to
read the textbook material on the “Producer-Consumer” (aka “Bounded-Buffer”) pattern.

13. If you haven’t yet, agree on two to three meeting times per week.

14. Now would be a good time to write at least an initial version of your malloc() wrappers.

15. What can you test at this point? Be creative.

16. Think hard about stacks. What should the child’s stack look like before and after a
thread fork? In fact, it is probably a good idea for you to draw every detail of the parent’s
stack and the child’s stack before and after thread fork. You should reach this point by
Friday, February 11th.

17. Write and test thr init() and thr create(). Run the startle test. You should reach
this point by Monday, February 14th.

18. Write an initial thr exit() that makes threads go away, without solving all of the problems
needed to make thr join() work plus all of the other problems.

19. From this point forward, it is very important that the code you write is based on case analysis
of errors as described in the “Errors” lecture. It is not a good idea to “code up” your thread
library without attention to error case analysis, then use the test suite to “debug” your
thread library, and then think about error handling the last minute. This is known to work
out poorly in a grade sense for this project, and also known to set you off on the wrong foot
for the next project.

20. Test mutexes and condition variables. Try to reach this point by Wednesday, February 16th.

21. Try all the misbehave() flavors.

22. Write and test thr join(). This will likely involve upgrades to thr exit().

23. This might be a good time to consider all possible negative interactions between/among
thr create(), thr exit(), and thr join().

24. Write a basic software exception handler which implements automatic stack growth for
legacy single-threaded applications. This should not be a lot of code, and you can revisit
your implementation later if you wish.

25. This might be a good point to relax and have fun writing semaphores.

26. This is a potential point for you to revisit your mutex design.

27. Test. Debug. Test. Debug. Test. Sleep once in a while.

28. Try all the misbehave() flavors (again). Note that most of the tests provided to you by the
course staff (see 410user/progs/README) are really multiple tests if you think about it...
you probably shouldn’t declare a test “passed” until all versions pass. Remember that you
should be running cyclone and agility drill by Friday, February 18th.

22

29. Design, implement, and test readers/writers locks.

30. Pick the two least-obvious/most-tricky lock placements in your code; talk them through
with your partner. For each, document why the lock is acquired in the right place and why
it is released in the right place.

31. Revisit your stack-growth exception handler and also decide what should happen when
threads in a multi-threaded application run into various kinds of exceptions or panic.

32. If you have time, maybe try out your thread library on the 15-410 “crash box” (see the
“Projects” web page).

33. Celebrate! You have assembled a collection of raw system calls into a robust and useful
thread library.

14.3 Questions & Challenges

Below we briefly discuss common questions about this assignment and issue several optional
challenges. It is very important that your implementation be solid, and you should not be diverted
from this primary goal by attempting to solve these challenges. However, we are providing this
challenge list as a way for interested students to deepen their understanding and sharpen their
design skills.

14.3.1 Questions

From time to time we are asked how many threads must be supported by a library implementation.
In general the answer is that the thread library should not be a limiting factor—it should be
possible to use all available memory for threads, and of course it could happen one day that
Pebbles would run on a machine with more memory. If, however, you feel you must impose an
a-priori static limit on the number of threads (or some other run-time feature), we will grade less
harshly if you document your reasoning.

Sometimes we are asked to state a simple requirement about bounded waiting (e.g., “Are we
required to implement the bounded waiting algorithm presented in the lecture slides?”). Since
this is a design class, you should give serious consideration to the issue of bounded waiting and
the interplay between bounded waiting and the system environment you will be using. Then you
should be in a position to evaluate the necessity of ensuring or approximating bounded waiting
and how you might go about doing that. Whatever you choose to do should sensibly balance
cost against utility. Your project documentation should briefly but convincingly explain your
reasoning.

What should happen if a thread is killed by an exception? Solving this problem in the general
case is much too difficult for this assignment, but it probably would be a good idea to think about
whether there is anything reasonable you could do with “a bit” of code and, if so, to try to do it.

14.3.2 Challenge: efficient thr getid()

There is an easy way to implement thr getid(), but it is woefully inefficient. Can you do better?
We have given you a serious hint.

23

14.3.3 Challenge: thr init()

Is it really necessary that thr init() be called before malloc()? How might you build malloc()

to make that unnecessary?

14.3.4 Challenge: “reaper thread”

If you feel you need a “reaper thread,” consider whether it’s really necessary.

14.3.5 Challenge: memory-efficient thr exit()

Since there is no bound on how much time can pass between a thread exiting and its “parent” or
“manager” thread calling thr join(), it is undesirable for a “zombie thread” to hold onto large
amounts of memory. Can you avoid this situation? There are multiple approaches, with different
tradeoffs.

14.3.6 List Traversal Macros

You may find yourself wishing for a way for a TCB to be on multiple lists at the same time
but not relish the thought of writing several essentially identical list traversal routines. Other
languages have generic-package facilities, but C does not. However, it is possible to employ the
C preprocessor to automatically generate a family of similar functions. If you wish to pursue this
approach, you will find a template available in vq challenge/variable queue.h. It is certainly
possible to write a thread library without doing this. However, making this investment now will
likely bear fruit during the kernel project.

24

	Overview
	Goals
	Important Dates
	Overview of Deliverables
	Automatic stack growth for legacy single-threaded applications
	Thread-crash handling for multi-threaded applications

	Thread Library API
	Return values
	``Illegal''
	Thread Management API
	Mutexes
	Condition Variables
	Semaphores
	Readers/writers locks
	Safety & Concurrency
	Distribution Files

	Documentation
	Thread Group Library
	The C Library
	Assertions
	assert()
	contracts.h
	``Production code''

	Debugging Support Code
	Build Options
	``SMPathos'' reference kernel

	Submission Inventory
	Grading Criteria
	``Spin Locks''

	Debugging
	Requests for Help
	Warning
	Debugging Strategy
	Reference Kernel Panics and Crashes

	Strategy
	Suggestions
	Suggested Steps
	Questions & Challenges
	Questions
	Challenge: efficient thr_getid()
	Challenge: thr_init()
	Challenge: ``reaper thread''
	Challenge: memory-efficient thr_exit()
	List Traversal Macros

