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1 Introduction

This semester, over the course of a week, you will turn your kernel into a hypervisor capable
of hosting 64-bit Linux and Windows 10 guests. Just kidding, that would not be possible,
not even for Eric Faust.1 The actual P4 assignment for this semester is to turn your kernel
into a hypervisor capable of hosting slightly-modified 15-410 kernels.

1.1 Virtualization Approaches

As you may recall from lecture, there are multiple top-level approaches to implementing
virtualization, including instruction-by-instruction emulation, binary code translation,
“trap and emulate,” and paravirtualization. Historically speaking, the authors of CP-40,
the first environment for virtualizing a hardware platform, found that the IBM S/360
architecture wasn’t fully virtualizable, resulting in the S/370 architecture. A similar thing
happened with the x86 platform, which was for many years not fully virtualizable but
now is. However, Intel’s mechanisms for virtualization, known as “VT-x” and “VT-d”, are
complicated due to the presence of many features intended to accelerate performance. As
a result, this semester we will not follow the “trap and emulate” approach, but will instead
pursue paravirtualization.

1.1.1 “Trap and Emulate”

A brief summary of the similarities and differences between the “trap and emulate” and
paravirtualization approaches is in order. The key similarity is that both approaches run
a guest kernel in user mode. This works for many instructions, e.g., ADDL $1,%EAX or
PUSHL %EBP, because those instructions have exactly the same effects in kernel mode and
user mode. However, kernels need to communicate to I/O devices (OUT), disable interrupts
(CLI), switch address spaces (MOVL %EAX,%CR3), and carry out other environment-changing
operations (writing to console memory, updating page-table entries). The “trap and
emulate” approach relies on the hypervisor somehow finding out each time the guest
kernel attempts a privileged operation, so it can safely and appropriately emulate the
effects. If a guest kernel, running in user mode, executes a privileged instruction (OUT, CLI,
MOVL %EAX,%CR3), the hardware will declare a general protection fault. The hypervisor
will obtain control via the general-protection-fault handler, at which point it can inspect
the instruction the guest kernel tried to run, figure out what to do, advance the guest
kernel’s %EIP past the instruction, and restart the guest. If a guest kernel, running in user
mode, writes to an area of memory with special significance (console memory, page-table
entries), the hypervisor will obtain control via the page-fault handler. In the “trap and
emulate” approach, fault handlers in the hypervisor must disassemble faulting instructions
to determine which action the guest kernel was trying to achieve.

1On a dare, Eric, a former OS TA, has gone from a blank screen to p3ck2 in under 48 hours. But Bruce
Schneier could write a complete hypervisor in 15,410 seconds!
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1.1.2 Paravirtualization

The paravirtualization approach, on the other hand, is based on the observation that most
privileged operations a kernel carries out are deliberate and located in a small fraction of
the overall kernel code; if it is possible to change the source code of the guest kernel in
a small number of places, the guest can explicitly indicate which privileged operation it
needs, saving substantial overhead. For example, in the “trap and emulate” approach,
disable interrupts() contains a CLI instruction, which will cause a GPF, at which
point the hypervisor will disassemble the instruction pointed at by %EIP to figure out
what needs to happen. In the paravirtualization approach, the kernel’s author replaces the
call to disable interrupts() with a call to the hv disable interrupts() hypercall. A
hypercall is an explicit system call to the hypervisor—in this case, asking that the guest
kernel not receive virtual interrupts for a while. Because the hypercall interface is explicit,
the hypervisor doesn’t need to disassemble instructions to figure out what it is being asked
to do, resulting in less coding for the authors of the hypervisor—meaning you. Also, in
some cases an explicit hypercall interface makes it possible for multiple guest-kernel actions
to be bundled up into a single hypercall, in which case the sequence can be carried out
with one trap to the hypervisor instead of literally hundreds or thousands of traps. For
example, recall the code you wrote in Project 1 to program the timer to run at a specific
rate. With “trap and emulate,” each OUT instruction would cause a trap and the hypervisor
would need to decode the meaning of each instruction; with paravirtualization, this painful
sequence of trapping and decoding could be replaced by a single “set timer rate” hypercall.

1.2 Guest Kernel vs. Guest User

Note that paravirtualization involves changes to the guest kernel code. Guest user code
is not modified. When a guest user program wishes to grow its address space, it will call
its new pages() stub routine, which will invoke INT $NEW PAGES INT. Your hypervisor will
switch the guest virtual machine from guest user mode to guest kernel mode and the guest
kernel will start running a system-call handler for new pages(). That handler code will
probably allocate a guest physical frame, install the frame into the currently-active guest
virtual address space, invoke the hv adjustpg() hypercall, and resume execution in guest
user mode via the hv iret() hypercall. This is an important feature of paravirtualization:
changes must be made to the guest kernel, but guest applications, including legacy
commercial applications for which source code is not available, run without modification.

1.3 Other Considerations

Because a kernel consumes the entire keyboard and screen while it’s running, there is no
sensible way to run multiple guest kernels at the same time unless the hypervisor provides
multiple keyboards and screens. Thus Project 4 also includes implementing virtual consoles.

Because writing a hypervisor is a very difficult task, multiple levels of achievement
will result in passing grades. In other words, substantial credit will be given for partially
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completing the assignment, as long as the completed parts work well and achieve interesting
results (see Section 6).

Through the course of this assignment, we expect that you will learn:

• the scope of tasks a hypervisor needs to accomplish (CPU modeling, I/O-device
modeling, time management),

• a bit about “I/O virtualization,” by multiplexing one console/keyboard pair across
multiple kernels,

• more about segmentation, both as an x86-specific artifact and as a general tool.

1.4 Simplifications

Due to the scope of the project and the time available, certain simplifications are reasonable.

• Because the size of “kernel memory” is limited, it is acceptable for your hypervisor
to support only a small number of guest kernels. In particular, mapping a complete
32-bit address space can require 4 megabytes of RAM, which could occupy one fourth
of the available kernel memory. While some VM implementations may make it easy
to support a large number of guest kernels,2 you will receive nearly full credit even if
you can’t support more than two. Try to avoid being able to support only one, but
in an emergency one will be better than none.

• Because keyboard input will be multiplexed between line-oriented consumers
(readline()) and character-oriented consumers (virtual keyboard interrupts
delivered to guest kernels), it will make sense for your readline() implementation to
be structured so that invoking threads essentially loop calling readchar(). Blocking
should still happen appropriately inside readchar(), so that regular host-kernel
programs block when they call readline() (guest kernels don’t have a way to block).

• Guest kernels will have an inaccurate notion of time, i.e., their clocks will not “tick”
at the expected rate, due to other threads competing for CPU time. The notion of
time in virtual machines is subtle,3 and you are not expected to definitely solve it
within the time available for this project.

• It may seem to you that a lot of execution time is spent building page tables which
are used only briefly. This is true, and page-table caching substantially improves
hypervisor performance, but it is outside the scope of this project.

2Supporting eight is genuinely feasible.
3See “Timekeeping in VMware Virtual Machines,”

https://www.vmware.com/files/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
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• If time is short, one thing to skimp on is correctly handling the cleaning up of crashed
or exited guests. It is probably a good idea to print out a somewhat detailed message
indicating why a guest is exiting, but in an emergency you could get away with just
dropping a broken guest from the run queue.

• Neither your kernel nor guest kernels are expected to use floating-point instructions.

Be sure to document your approach and design decisions before you submit your project;
also be sure to mention any shortcuts you were forced to take. We are interested in
understanding what about the project did and didn’t work out in case it is used in the
future.

1.5 Additional Spring 2022 Pandemic Simplifications

The majority of this document describes an assignment which we have used in previous
semesters. However, the course staff is aware that this is not a typical semester, that
students may be more burned-out, and that your time may be more limited than typical
due to external events or the need to catch up in other classes. However, we still want
to provide a timely and learning-intensive project. To that end, we are attempting to
reduce the functionality which we will grade, focusing on the parts we think involve the
greatest ratio of conceptual learning to time, while still making the entire project available
for students who happen to have extra time to spend. Note that “merely” coming to a
full understanding of the material in this handout and in the Virtualization lectures is a
high-density learning activity.

You will receive nearly full credit for the project (see Section 6) if you adopt the following
simplifications:

• Virtual console support is optional (new console() is allowed to always return an
error). This means that running multiple guests is technically possible but impractical
if they rely on keyboard input and/or do any substantial amount of console I/O.

• hv setidt() can reject all IDT entry numbers above 33, and can ignore the
“privileged” parameter.

• hv setpd() and hv adjustpg() can be treated as illegal (i.e., it is ok to just crash
the guest).

• hv iret() can crash the guest if esp0 is not 0.

• Steps in the attack plan after “flayrod” and “cliff” can be regarded as aspirational
rather than required.

6



1.6 Build Infrastructure

The Project 4 infrastructure is designed to build dual-purpose kernel binaries which can be
booted on real hardware or launched inside a PebPeb hypervisor. This means that whether
you are trying to build a PebPeb guest or a PebPeb host you will use the same tarball,
update script, makefile, etc.

The startup code that runs before kernel main() has been modified to check whether
it has been launched as a kernel by the GRUB boot-loader on real hardware or as
a PebPeb guest kernel by a PebPeb hypervisor host. In the guest-kernel case, the
GDT/TSS/IDT-setup phase will be skipped; in either case, the LMM memory allocator will
be configured appropriately and machine phys frames() will return the relevant memory-
size information. In either case, hv isguest() will return whether the kernel image is
running in guest or host (hypervisor) mode.

The net effect is that it is possible to build a single guest binary which can be booted
on hardware or launched as a paravirtualized guest. While dual-nature kernel binaries are
possible, this is not a requirement for Project 4. You will submit a version of your kernel
that supports PebPeb guests via paravirtualization; you are not required to also modify
your kernel so that it can run as a paravirtualized guest. That might be fun (you could
boot your kernel inside your kernel), but it is strictly optional.

We have provided you with guest kernels in two forms. First, there are various .bin

files in the 410guests directory. You may include any or all of these in your kernel’s
RAM disk by listing them in a 410GUESTBINS directive, which you will need to add to
your config.mk file. Second, most of the guests are provided in source form, also in the
410guests directory. This source code can’t be compiled into a guest kernel “in place”;
in particular, it is missing hypervisor stubs. Directions in guests/README explain how to
build these guests from source, which can be useful if you want to add debugging code or
slightly modify the behavior of a guest. Once you have set up a given guest to be built
from source you will move its name from 410GUESTBINS to STUDENTGUESTS.

1.7 Debugging Warning

You will need to be creative during debugging. In particular, the Simics debugger isn’t
as organized as it might be when it comes to debugging code when two symbol tables lay
claim to the same part of the address space. You may need to set breakpoints carefully,
and you may wish to disassemble payloads for reference purposes (using, e.g., objdump).

1.8 Hand-in

Please remember to make veryclean. This will clean up not only the object files in your
kernel tree but will also clean up the build trees of any guests you are building from source.

When handed in, your kernel must be runnable! This means that it must, upon �

being built and booted, start running idle, init, and shell without user intervention. In
particular, it must not drop into the Simics debugger. When we run the test suite, there
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will not be a human present to continue execution. Thus, the test harness will declare your
kernel to have failed the entire suite.

Also, your kernel should not generate reams of lprintf() debugging messages while
running. Ideally you should adjust the setting of your trace facility so that it generates no
messages, but in any case the normal loading, execution, and exiting of a program should
not generate more than 20 lines of kernel.log output. �

It is very important that your README explains which parts of the project you have
got working, and which are working solidly.

1.9 Document Roadmap

This document consists of the following parts:

• Introductory material about paravirtualization

• Description of the “PebPeb” guest execution environment

• Specification of the “PebPeb” hypercalls

• A specification of virtual consoles

• Attack plan, including suggestions

This document does not contain all information necessary to complete the project. In
particular, we expect it will be necessary to carefully study the lecture material, the source
code of the guest payloads we provide, and documentation provided in the new header
files in the spec/ directory. Also, we expect that you will need to read this document
top-to-bottom at least three times.

2 Guest Kernel Execution

2.1 The Address-Space Collision

At this point you might be worrying about an address-space collision. If your kernel is
linked to run below USER MEM START and the guest kernels you will be hosting are also
linked to run below USER MEM START, how can that work? While virtual memory can be
used to map a given virtual address to any physical address, mapping the same virtual
address to two different places requires an address-space change. For example, when your
hypervisor kernel is booted, the first page of your code region is located in physical memory
at 0x100000; when your kernel enables virtual memory it will “direct-map” that page so
that virtual address 0x100000 maps to physical address 0x100000. When you launch a
guest kernel, it will expect that the first page of its code region will be located in physical
memory at 0x100000 (obviously it can’t be), and it will try to establish a direct mapping
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from virtual address 0x100000 to physical address 0x100000 (obviously your hypervisor
can’t allow it to do that).

Luckily (for our current mission) x86 hardware has an additional mapping feature,
namely segmentation! So far in this class we have stuck to a “flat” model where every
segment starts at 0x00000000 and is 0xFFFFFFFF bytes long, but for P4 we will revoke
that simplifying assumption. In particular, you will set up one or more segments with a
base address of USER MEM START and a size much smaller than 0xFFFFFFFF. When your
hypervisor kernel runs a standard Pebbles executable such as the shell, the program
will run with the traditional segments for Pebbles user-mode code (SEGSEL USER CS,
SEGSEL USER DS). However, when your hypervisor kernel runs a “PebPeb” guest, both
the guest kernel code and the guest user code will use the new user-mode segments you
will set up.

guest virtual linear virtual physical

USER_MEM_START

paging

guest kernel

guest kernel

host kernelhost kernel

guest user
USER_MEM_START

0x001009cf

0x011009cf

guest user

segmentation

Figure 1: Using segmentation to “lift” guest address spaces

Let’s assume that the very first instruction a guest kernel will execute is located at guest
address 0x001009cf.4 If we launched the guest using the standard USER CS segment, the
segment descriptor would identity-map code-segment address 0x001009cf to linear virtual
address 0x001009cf, which the kernel would have mapped as supervisor-only, and the
instruction would receive a page fault. However, you will launch the first instruction of the
guest kernel using a different code segment, with a base of USER MEM START. Thus when the
guest issues an instruction fetch for code-segment address 0x001009cf, the segmentation
system will turn that into linear virtual address 0x001009cf+0x1000000=0x011009cf.
Because that address is outside the direct-mapped area your kernel inhabits, it will appear
to be a regular user-space address and everything should be ok. In other words, the
guest will think it is executing an instruction at virtual/physical address 0x001009cf,
but the instruction will actually be located at virtual address 0x011009cf. If the guest
kernel eventually launches some guest user code, that code will appear to guest kernel code
and guest user code to be located at virtual address USER MEM START, but in terms of the

4The guest kernel launches in a direct-mapped address space, so the first instruction is located at
guest-virtual address 0x001009cf and guest-physical address 0x001009cf; this will be discussed further
in Section 2.2).
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address space set up by your hypervisor, the code will actually be located at virtual address
USER MEM START+USER MEM START (see Figure 1).

The main downside to this segmentation trick is that neither guest kernel code
nor guest user code will be able to refer to addresses in the last sixteen megabytes
(0xFFFFFFFF−USER MEM START=0xFEFFFFFF). Your hypervisor will inform each guest of
its maximum virtual address at launch time (see Section 2.3). This maximum virtual
address might be 0xFEFFFFFF, or some smaller value if your hypervisor wishes to reserve
some virtual address space for its internal needs.

To accomplish this segment-based mapping, you will need to construct some segment
descriptors and install them in the GDT. We have added four blank entries to the GDT,
with slot indices SEGSEL SPARE0 IDX through SEGSEL SPARE3 IDX. We have also added to
seg.h corresponding partial segment selectors, SEGSEL SPARE0 through SEGSEL SPARE3. In
addition, we have added a function gdt base() which returns the base address of the GDT.
You will need to carefully study the documentation in intel-sys.pdf on segmentation,
segment descriptors, and segment selectors in order to accomplish the segmentation part
of your mission. Don’t forget that segmentation is also discussed in the Project 1 handout
and summarized on a web page on our “Projects” page.

2.2 The “Boot VM” Address Space

When a Pebbles kernel boots on PC hardware (or Simics), kernel main() begins in
protected mode with paging off. In this mode, the kernel has access to all physical memory
without any mapping.5 Most Pebbles kernels eventually set up page tables and turn paging
on, but some (e.g., P1 games) do not, and even the ones that do use paging need to run
setup code in order to set up page tables.

When your hypervisor launches a guest, obviously paging will be on because your
hypervisor will have turned it on, and paging, once on, is never turned off. But the guest
will need to run substantial amounts of code before it makes a hv setpd() call to define
a virtual address space—if, indeed, it does so at all. Before launching a guest, you will
have allocated some number of actual physical frames for that guest to use, and you will
have set up some numbering system so that the guest will believe it has access to frame 0,
frame 1, etc.—these will be “guest physical” frames in the sense that the guest will put
those numbers into the page tables it creates. Before you launch the guest you should set
things up so that if the guest accesses address 0x00000000 it refers to the frame that the
guest thinks of as frame 0, address 0x00001000 refers to the frame that the guest thinks of
as frame 1, etc.; with all of guest memory being read/write. This is referred to as the “boot
VM.” If a guest ever issues the hv setpd() hypercall to define a virtual address space, the
boot VM mapping can be discarded—there is no way for a guest to “disable paging” and
thus no way for it to return to the boot VM operating environment.

5Actually, a few “secret” mappings are in effect; if you are interested, look up “BIOS shadowing,”
“System Management Mode,” etc.
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2.3 Launching a Guest Kernel

A guest kernel is launched when a user program such as the shell, running on the host
kernel, invokes the standard Pebbles exec() system call on an ELF binary which contains
a guest kernel. A host kernel distinguishes between regular user-space executables and
guest-kernel executables by checking whether the beginning of the text region is at, versus
below, USER MEM START.

When a PebPeb host kernel launches a guest kernel, the execution state is as follows.

• Some number of hypervisor (actual) physical frames have been allocated to the guest.
You can launch every guest with the same fixed size (which must be at least 20
megabytes), or you can optionally parse argv[1] as a decimal integer indicating a
number of megabytes. The guest will refer to these hypervisor physical frames (which
may well be non-contiguous) using contiguous guest physical frame numbers counting
upward from zero.

• A “boot VM” virtual address space has been prepared which direct-maps those frames
(guest virtual page X maps to guest physical frame X, which in turn is mapped to
the appropriate hypervisor physical frame). The “boot VM” address space closely
resembles hardware protected mode with paging disabled, though of course paging
will be on for every instruction executed by the guest.

• The guest’s ELF image (text, rodata, data, BSS) are all loaded into the guest’s address
space at the indicated addresses. As is the case when a regular Pebbles kernel begins
execution, these guest virtual pages are all read/write.

• %EAX contains the magic value 0x15410DE0U (GUEST LAUNCH EAX).

• %EBX contains the maximum legal guest physical frame number

• %ECX contains the maximum legal guest virtual address

• %CS contains a selector for a 32-bit ring-3 read/execute code segment with an offset
of USER MEM START and a limit less than 0xFFFFFFFF.

• %DS, %ES, %FS, %GS, and %SS each contain a selector for a 32-bit ring-3 read/write
data segment with an offset of USER MEM START and a limit less than 0xFFFFFFFF.

• All other registers (including %ESP!) are zeroed.

• The virtual IDT contains no valid entries.

• Virtual interrupts are disabled.
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2.4 The Hypervisor Call Interface

PebPeb hypervisor calls use a different calling convention than Pebbles system calls.

To make a hypervisor call, a PebPeb guest kernel places the call number into %eax and
invokes INT $0xDE ($HV INT—all values are documented in spec/hvcall int.h).

If the hypervisor call in question takes parameters, they are found in “reverse order”
at (%esp), 4(%esp), etc. For example, a guest kernel can move the cursor on its screen by
invoking hv cons set cursor pos(int row, int col). In that case, the address of row

will be (%esp) and the address of col will be 4(%esp). When the hypercall returns, the
return value will be found in %eax.

If a hypervisor call requests an action which is invalid, such as providing an invalid
pointer or attempting to map nonexistent frames into its address space, the hypervisor
should immediately crash the guest, i.e., there are no “failure return codes” in the
specification. A reasonable hypervisor implementation will print a message somewhere
describing what went wrong. “Crashing the guest” means pretending the guest had invoked
hv exit(0xDEADC0DE) (GUEST CRASH STATUS).

Note that the hypervisor must be careful when validating addresses specified by guest
kernels. With the exception of page directories, which are guest-physical addresses,
addresses specified by guests are guest-virtual, meaning that the hypervisor must translate
them carefully in order to fetch or store the data.

2.5 Delivery of Virtual Interrupts/Exceptions/Traps

If a “surprise” happens while a guest kernel is executing, control will transfer to your host
kernel. Some surprises will be due to an action taken by the guest, such as a hypercall; other
surprises will be due to physical hardware interrupts. In addition, guest code (either guest
user code or guest kernel code), might result in an exception or fault. Some surprises will
result in resuming execution of the guest, but others, such as the physical timer interrupt,
may result in a temporary suspension of guest execution.

There are many cases; here are some to consider.6

• A guest user program might divide by zero.

• A guest kernel might divide by zero.

• The physical timer might generate a physical interrupt while the guest is running
kernel code.

• A physical key might be released while the guest is running user code.

In some situations a guest event, or even a non-guest event, may require the host kernel
to deliver a surprise to the guest kernel, i.e., rewrite the guest virtual machine execution
state so that the guest suddenly starts running a handler in guest kernel mode. A key

6“Consider” means answering “What should the result be?”
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thing to keep in mind is that your host kernel must not deliver a virtual interrupt to a
guest kernel if the guest kernel has disabled virtual interrupts. Thus your host kernel must
track the virtual interrrupt-enable status of each guest.

From the point of view of the guest, virtual interrupt/exception/trap delivery occurs as
follows.

1. Delivery of virtual interrupts is suspended (every vIDT entry is an “interrupt gate”)

2. If the guest is not already in guest kernel mode, then:

• The guest enters guest kernel mode.

• The value of esp0 from the most recent hv iret() invocation is loaded into
%ESP.

• The old value of %ESP is pushed onto the stack.

• The value of %EFLAGS is pushed on the stack. The value that should be pushed
is the virtual/logical %EFLAGS before the event. For example, if the event being
delivered is a virtual interrupt, the IF bit in the pushed %EFLAGS should be 1,
because if the guest had virtual interrupts off we wouldn’t be delivering a virtual
interrupt. However, if the guest had virtual interrupts disabled and encountered
an exception, the IF bit in the pushed %EFLAGS should be 0, so that the right
thing will happen if the guest passes this saved %EFLAGS value to hv iret().

• The value 0x13370000 (GUEST INTERRUPT UMODE) is pushed onto the stack.

Note that when a guest switches from guest kernel mode to guest user mode, which
pages it has permission to access must change accordingly.

3. Otherwise (if the guest is already in guest kernel mode):

• The value of %EFLAGS is pushed on the stack (as above).

• The value 0x00001337 (GUEST INTERRUPT KMODE) is pushed onto the stack.

4. Regardless of whether or not there was a stack switch:

• The old value of %EIP is pushed onto the stack.

• An interrupt/exception/trap-specific code is pushed onto the stack as follows:

– If the event is an x86 exception which specifies an error code (#PF, #GP),
that code is pushed.

– If the event is a virtual keyboard interrupt, the augchar7 in question is
pushed.

– Otherwise, 0x00000000 is pushed

7“augmented char”—refer to the Project 1 documentation.
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• One more word is pushed onto the stack: if the event is a page-fault exception,
the most recent faulting address is pushed onto the stack in guest-virtual format ;
otherwise, a zero is pushed. Note that the x86-32 page-fault exception sets %CR2
to the linear virtual address that caused the fault; please refer to Section 2.1.

• %EIP is set to the first instruction of the handler.

Virtual traps are delivered to the guest kernel in the same fashion as virtual interrupts
and exceptions.

Note that if anything goes wrong while doing these steps (e.g., pushing onto the guest’s
stack fails), the hypervisor crashes the guest—this is the PebPeb equivalent of an x86-32
triple fault.

2.6 Virtual Interrupt Acknowledgment

The PebPeb environment virtualizes interrupts, but it does not expose an explicit model of
the hardware programmable interrupt controller (PIC) to guest kernels. That is, there isn’t
a “paravirtual outb()” that sends an “interrupt acknowledge” command to the “paravirtual
PIC.”

In PebPeb, virtual device interrupts have been simplified compared to the x86 model.
First, all virtual interrupt entries in the virtual IDT are “interrupt gates” in the sense that
delivering one virtual interrupt to a guest automatically suspends delivery of other virtual
interrupts to that guest. Second, when a guest re-enables virtual interrupt delivery (most
naturally via hv iret()), that is a statement to the hypervisor that the guest is ready
to receive all virtual interrupts, including the next virtual interrupt from the most-recent
source, so there is no need for a separate hypercall to explicitly enable further virtual
interrupts from a particular virtual device. Skipping a “paravirtual outb()” step is a
performance win, and one of the goals of paravirtualization is improving the performance
of virtual I/O devices compared to physical I/O devices.

3 Hypervisor Calls

• unsigned int hv magic(void) - Verifies that we are running under a version 2
PebPeb hypervisor, by returning the “magic number” 0xC001C0DE (HV MAGIC).

• void hv disable interrupts(void) - Suspends delivery of virtual interrupts (of
course, virtual exceptions cannot be “suspended”).

Note that a guest invoking hv disable interrupts() does not mean that
the hypervisor invokes disable interrupts() or that physical interrupts stop
happening! The hypervisor needs physical clock interrupts to keep arriving so that
it can time-slice between guests. When a guest “disables” virtual interrupts, what is
suspended is delivery to the guest kernel of virtual interrupts that “belong” to it.

Note that when a guest kernel is launched virtual interrupts are initially disabled.
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• void hv enable interrupts(void) - Begins or resumes delivery of virtual
interrupts.

• void hv setidt(int irqno, void *eip, int privileged) - Installs a virtual
interrupt/exception/trap handler for the specified virtual-IDT slot—unless the
specified eip is zero, in which case the handler is uninstalled. If the privileged

parameter is non-zero, it is illegal for guest user code to invoke this handler via the
INT instruction, so a virtual general-protection fault should be delivered to the guest
kernel.

If a guest experiences a virtual interrupt, exception, or trap at a time when no
handler is installed for that event, the hypervisor crashes the guest—this is the
PebPeb equivalent of an x86-32 triple fault.

Your hypervisor must support at least those virtual IDT slots expected for operation
of Pebbles guests, namely:

0..19 Hardware events 410kern/x86/idt.h

32..33 Virtual interrupts spec/hvcall.h

65..116 Regular system calls spec/syscall int.h

128..134 Irregular system calls spec/syscall int.h

• void hv setpd(void *pdbase, int wp) - Activates a new address space. The value
of pdbase must be page-aligned; note that pdbase specifies a guest physical address
(in other words, a guest frame), not a guest virtual address. If the value of the wp

parameter is non-zero, guest kernel code should experience a page fault if it attempts
to write into a guest virtual page which the guest has marked as both user-level and
read-only (see Intel’s description of bit 16 of %cr0).

PebPeb page-directory and page-table entries support only a subset of the x86
hardware flags. In particular, only the present, read/write, user/supervisor, base-
address, and “available for system programmer’s use” bits are supported. All other
bits (e.g., global) must be set to zero.

• void hv adjustpg(void *addr) - Re-validates/invalidates/updates the mapping of
one guest-virtual-to-guest-physical translation. The hypervisor will examine the guest
page-directory and page-table entries which map the guest virtual address specified
by addr (which must be page-aligned) and will make any appropriate changes to
the page tables maintained by the hypervisor. This call may be used to inform the
hypervisor that a mapping has been added or removed, that some flag bits have been
changed, etc.

• void hv iret(void *eip, unsigned int eflags, void *esp, void *esp0,

unsigned int eax) - Atomically activates a new privilege level and/or execution
context.
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The registers %eip, %eflags, %esp, and %eax atomically take on the values specified
by those parameters. If the esp0 parameter is zero, execution will remain in guest-
kernel mode; otherwise, execution will switch to guest-user mode and the esp0

value will be used to deliver the next virtual interrupt, exception, or trap. In the
post-hv iret() execution context, virtual interrupts will be on or off depending on
the value of the IF bit in the specified eflags parameter.

Note that the hypervisor must carefully examine the specified value of the eflags

parameter: if it’s invalid, it must crash the guest instead of allowing it unwarranted
powers.

Also note that when a guest switches between guest kernel mode and guest user mode
which pages it has permission to access must change accordingly.

• void hv print(int len, unsigned char *buf) - Prints to the console. The
maximum length is HV PRINT MAX.

• void hv cons set term color(int color) - Changes the color used for future
printing on the console.

• void hv cons set cursor pos(int row, int col) - Sets the cursor position, if
valid; otherwise, crashes the guest.

• void hv cons get cursor pos(int *rowp, int *colp) - Retrieves the cursor
position, if the pointers are valid; otherwise, crashes the guest.

• void hv print at(int len, unsigned char *buf, int row, int col,

int color) - This hypercall may be used to increase efficiency. It moves the cursor,
changes the print color, prints, and then restores the cursor position and print color.
The maximum length is HV PRINT MAX.

• void hv exit(int status) - Ceases execution and passes the indicated status to
the parent of the host task that launched the guest with exec().

4 Virtual Consoles

Note: The functionality described in this section is optional for Spring 2022.
That said, if you want to use the Tab key to multiplex keyboard events among guests
without doing screen management or readline() buffer management, you may. Also,
reading carefully through how virtual consoles are expected to work may be instructive.

What “virtual consoles” means is that the single physical screen and keyboard are
multiplexed by the operating system (that’s you) so that it looks as if there are multiple
instances of each one. Output routines such as print() will paint to a virtual screen,
which may or may not be visible, and keyboard scan codes will result in characters being
available on various keyboard queues at various times.
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From the user’s point of view, there should be multiple independent text consoles, and
pressing the Tab key on the keyboard should switch the screen and keyboard “promptly”
from one virtual console to another (by “promptly” we mean that this should happen
promptly–not after the next readline() completes, etc.).

Threads belonging to a task share a virtual console. Each newly created task will begin
using the same virtual console as its parent task.

If you wish to use a different color combination for each virtual console, they must all
be reasonable.

Once a virtual console has no more threads or proceses associated with it, it should be
deleted from the Tab-key rotation after the user has had a chance to view the contents once
(it might be friendly for the kernel to somehow indicate to the user that this is the last
viewing of the console and optionally for the kernel to require a confirmatory keypress).

As a practical matter, it isn’t clear there is a sensible usage model for a single console
to be shared between multiple guests, or between a guest and a non-guest program. It is
not even crystal clear what should happen with pending keyboard input when a guest is
launched or exits in a console. Thus, you are not expected to ensure that “the single right
thing” happens in such scenarios. Of course you shouldn’t crash, but you have flexibility
to set reasonable policy.

4.1 System Call

To activate virtual consoles, one new system call is added:

• int new console(void) - If it is possible to create a new console, do so and switch
all further console I/O of the calling task to the new virtual console.

If too many virtual consoles are in use, new console() may fail. Try to support at
least four virtual consoles.

If any thread in a thread family has a console I/O operation pending or in progress,
new console() should fail.

If nobody ever calls new console() the operation of the console/keyboard system
should be as it was for P3. Also, user code should have no way of observing it
is not running on a P3 kernel without virtual consoles (aside from the behavior of
new console()).

4.2 Utility Program

You have been issued a new user program, new shell, which invokes the new console()

system call to launch a shell in a new virtual console. Please consult the source code in
new shell.c as you read the descriptive text below.
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4.3 Usage Scenario

Here is a usage scenario which hopefully clarifies how virtual consoles should work.

1. A Pebbles kernel implementing virtual consoles is booted and init launches the shell.
The shell is running in the system’s sole virtual console.

2. The shell prints a prompt and invokes the readline() system call.

3. The kernel blocks the shell.

4. The user types new shell and hits Return.

5. The kernel unblocks the shell, which invokes fork() and (in the child) exec().

6. The shell blocks on wait().

7. The new shell program invokes the fork() system call and (in the child) the
new console() system call. The kernel creates a second virtual console, updates
the task data structure so it references the new virtual console, and switches to
displaying the new (blank) virtual console. The new shell child invokes the shell via
exec(). The second shell prints a prompt (in the second virtual console) and invokes
the readline() system call.

8. The kernel blocks the second shell.

9. The new child parent task exits.

10. The first shell, running in the first virtual console, which is not visible, completes
the wait() system call, prints a program-completion message, prints a prompt, and
blocks in readline(). All of this output (including cursor motion) is stored in the
first virtual console’s data structures so it can be viewed later, but none of these
changes are visible on the screen.

11. Meanwhile, the user types “cho” at the second shell’s prompt, but does not hit Return.
Instead, the user presses the Tab key.

12. The kernel switches to the first virtual console, which involves displaying its contents
on the screen. The user sees the completion message from the shell and the shell
prompt. Now the user hits the Tab key again.

13. The kernel switches to the second virtual console, where the user sees the shell prompt
and “cho” following it.

14. The user hits the Return key.

15. Now the kernel unblocks the second shell, readline() completes, the shell launches
cho, and the user can see output scrolling by on the console.
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16. If the user hits the Tab key, the screen goes back to the first virtual console, where
nothing is happening, since the first shell is blocked in readline(). Hitting the Tab
key again will display the contents of the second virtual console, where cho may still
be running, or may have finished.

4.4 Architectural Considerations

As you can see, virtual consoles complicate the implementation of readline() and the
physical keyboard interrupt handler. In particular, when a scan code arrives, the data
structure for some virtual console needs to be updated, a character may be need to be
printed to a virtual console, and changes made to the virtual console need to be reflected
on the actual screen. Given the increased complexity of handling input, it is permitted
for your readline() implementation to awaken blocked threads more often than once per
completed line.

Guest virtual kernels complicate the situation further in two ways. First, guest kernels
want augmented characters, not scan codes or characters. Second, guest kernels may run
with virtual interrupts off. Key presses/releases that arrive while the guest has virtual
interrupts off, up to a reasonable limit, should be queued for delivery when the guest
re-enables virtual interrupts. Third, when a guest kernel exits, the virtual console in
question, which probably contains a shell which is about to complete a wait() system call
and launch a readline(), needs to stop queueing augmented characters for the guest and
resume processing them into characters for readline(). This may serve as a further reason
for readline() to awaken blocked threads before a line has been completed.

5 Plan of Attack

A recommended plan of attack has been developed. While you may not choose to do
everything in this order, it will provide you with a reasonable way to get started.

If you find yourself embarking on a plan which is dramatically different from this one,
or a kernel architecture which is dramatically different from what we’ve discussed in class,
you should probably consult a member of the course staff. It is quite possible that your
approach contains a known-to-be-fatal flaw.

1. If you are not generally pressed for time, consider testing your P3 kernel on the crash
box. While you are not required to get your P3/P4 working on the crash box, it
is quite gratifying to see your kernel running on real hardware and hosting another
kernel. If you want to try to get there, it is much easier to make sure your P3 kernel
runs on the crash box before you add hypervisor support—it is generally easier to
debug smaller and simpler programs than larger and more-complicated programs.

2. Review the P4 lecture material.

3. Carefully read this entire handout top to bottom and form a todo list.
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4. Unpack the tarball and follow the directions to upgrade your P3 build tree to a P4
PebPeb build tree. Make sure that your kernel builds and runs without incident.

5. Read through the new files in spec/ and also the explanatory material in
guests/README.

6. Read the source code of key guests—at least magic and console, but arguably also
station. It is probably wise to talk through and write down a detailed list of the
events that must happen for magic to carry out its mission. If you are unclear on
the meaning of specific parts of the specification, reading the code for further guests
may be useful.

7. Read up on segmentation (using the materials listed above). Examine the new
material in 410kern/x86/seg.h.

8. Plan the virtual-console work. Depending on your group, it may make sense for one
person to start work on this right away, or it may make sense to defer this part
entirely until everything else works. Whenever you do it, here are some steps.

• Consider rewriting readline() to have more “loop around readchar()” nature.
Don’t forget that readchar() should block.

• Implement console-switching when readchar() is about to “process” the Tab
key

• Test with our “launch shell in new console” program

Note that it is possible to significantly defer some of the virtual-console work. For
example, nothing truly terrible will happen if virtual consoles are not deleted and
instead remain viewable indefinitely even after the task(s) using them have exited.
Also, it is entirely possible to run one guest even if your kernel supports only one
console.

9. You may wish to go through the steps to build one of the guest payloads from source
(this includes writing hypercall stubs). If for some reason you can’t make this work,
it would be wise to seek help from the course staff quickly.

10. You may wish to port a Project 1 game kernel to the PebPeb paravirtualized
environment (see below). It isn’t necessary to do this right away, but it is another
way to firm up your understanding of the guest environment and what it requires, so
you might want to plan now to do it later.

11. Decide on key data structures.

• We encourage you to avoid adding random fields into random structs
throughout your kernel. Instead, we recommend clustering virtualization-related
information together in an appropriate way.
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• Figure out how to track which hypervisor frames are allocated to the guest (for
verification, mapping, and release).

• Figure out how to represent guest IDTs.

12. Decide on key utility functions. How will you handle the need to read from and write
to guest virtual and guest physical addresses? Is there an opportunity to encapsulate
this in a clean way?

13. Install one or more segment descriptors as appropriate, and figure out which segment
selectors you will place in various segment registers in order to access those segments.
Potentially consult our web site’s list of useful Simics commands to see if anything
there is useful.

14. Write code to set up a guest “boot VM” (allocate a bunch of hypervisor frames for a
guest, record the allocations somewhere, “direct-map” the guest frames).

15. Provide your kernel with “ELF lookaside loader” functionality: an ELF loader capable
of loading into a different address than execution will take place at. Guest kernels
should be loaded so that guest logical address 0x00000000 is loaded at hypervisor
virtual address 0x01000000 (USER MEM START). The guest kernel executable should
be loaded into memory so that when it is executed it believes its address space begins
at 0x00000000. It may be helpful to draw a picture of the address space as seen by
the guest, the hypervisor, and the physical frame allocation.

16. Use the ELF lookaside loader to load a guest into the guest’s boot VM. Disable
physical interrupts, set cr3() into the boot VM, and drop into the debugger. Check
that everything is where it needs to be.

17. Write more of exec guest(), to the point where you can launch the “hello” guest
payload.

• Form up a set of register values

• Write code to launch the guest, probably involving set cr3() and IRET. Be sure
to enter the guest with physical interrupts disabled since neither the guest nor
the host is really ready to take interrupts yet. For a while you may work in a
mode where you are able to switch into a guest and do some things on its behalf,
but not switch out of the guest and run something else. That is fine.

18. It should be easy to get the “dumper” payload running now. It is ok if for the next
several steps launching a guest permanently disables physical interrupts.

19. Implement hv magic() and test it with the “magic” payload. At some point you will
want some sort of dispatch framework for the various hypercalls.

20. Now that your guest can make hypervisor calls, implement hv exit() and the console-
output calls, and run the “console” payload. Note that the guest specifies parameters
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using guest-virtual addresses (based on %esp, which is a guest-virtual address); all
of those addresses must be translated before/as your kernel uses them to fetch or
store guest data. If guest launch has been permanently disabling physical interrupts,
you might want to hack hv exit() to turn them back on. Now you have reached
“checkpoint 1”!

21. Implement hv disable interrupts() and hv enable interrupts() - start with a
fake version that just sets/clears a flag.

22. Now don’t disable physical interrupts as part of guest launch. Verify (using, e.g., “bg
hello”) that you can leave guest execution via a physical timer tick, run other things
for a while, and resume guest execution. Don’t worry about delivering virtual timer
interrupts—as far as the guest is concerned, it is always running, but sometimes it
runs slower than other times. At this point you have returned to having a “working
system”: launching a guest doesn’t mean that your system becomes useless for
running other things. This is good.

23. Write an initial version hv setidt() that just registers handlers. If you launch the
“station” guest, it should sit there doing nothing.

24. Write an initial version of virtual-interrupt injection. You can deploy it in a trial
fashion: when you resume the guest after a context switch, if its virtual interrupts are
off, merely resume it, but if they are on, mutate its state according to the exception-
delivery protocol so it experiences a virtual timer interrupt. Now the “station” guest
should do something.

25. Now you can write an initial version of hv iret(): don’t worry about validation or
esp0, since for now we are concerned with going from guest-kernel mode to guest-
kernel mode after handling a virtual interrupt. This should enable you to run the
“tick tock” payload. Now you have reached “checkpoint 2”!

26. Now that you have virtual clock interrupts doing something, you might try getting
a hacked-up version of virtual keyboard interrupts working as well—for example, if
a physical keyboard interrupt arrives while a guest is running with virtual interrupts
on, deliver it to the guest, otherwise do something else. The “tick tock” guest can
provide a simple check of your work.

27. Now is probably a good time to think through the design and policy issues
related to virtual interrupts, which might make sense to break down in terms of
interrupt detection (what is the relationship between physical interrupts and virtual
interrupts?) and virtual interrupt delivery (including delivery scheduling). Consider:

• When is a virtual timer interrupt for a guest detected?

• When should a virtual timer interrupt be delivered to a guest?

• When a physical keyboard interrupt happens, what will it probably be
interrupting?
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• When should a virtual keyboard interrupt be delivered to a guest?

• Your virtual interrupt implementation might (or might not) involve an event
queue or two.

• Hint: some hypercalls not directly related to virtual interrupts may be able to
provide some “support” for the delivery of virtual interrupts.

28. If you have guest console output, guest keyboard input, and guest timer interrupts
working, it should be possible to run the “gomoku” guest and play a game.
This is actually quite a triumph, even if it is hard to explain to your friends
and family members exactly what you have achieved.8 You can also guestify
410kern/p1test/410 test.c from Project 1—or maybe even your own P1 game.9

If you have “gomoku” running well, it is possible to clean up your code and submit
a successful, if not full-credit, hypervisor project.

29. Use the “flayrod” and “cliff” payloads to upgrade your handling of guest surprises.
Now you are ready to tackle guest user mode and run a complete kernel.

30. Write page-table “compiler” code and hv setpd()/hv adjustpg(). Note that the
guest generally needs two address spaces “handy”:

(a) the kernel-mode page table, which can variously read and/or write most or all
of the pages mapped by the page directory, and

(b) the user-mode page table, which can variously read and/or write only the pages
which are mapped and not supervisor pages.

You have multiple options for handling this. For example, you can repeatedly re-
translate from the guest page tables into hypervisor page tables for the currently-
required mode. Another alternative might be maintaining one pair of translated
page tables to make it easy to “flip” between guest kernel mode and guest user mode.

Once guest kernels can manipulate virtual memory, you can use various payloads we
provide (“teeny,” “vast,” “warp”) to check your work.

31. Upgrade hv iret(), at least enough to get into guest-user mode. Now you should be
able to run the “fondle” payload.

32. Now that a guest kernel can set up virtual memory to run a guest user, the next
step is a way for guest user code to make system calls into the guest kernel. You will
need to add code to your system-call entry points: check if a guest was running and,
if so, package up the state before the INT instruction as a virtual exception, mutate
the guest’s execution state appropriately, and resume execution of the guest. Don’t
forget about misbehave(): if a guest user program and a guest kernel both agree on

8“This may look like a simplistic game with low-quality graphics. The important thing is that the
machine it is running on does not exist! And it’s experiencing time dilation equivalent to the surface of a
neutron star! Mwa-ha-ha!”

9You may wish to consult and/or adapt 410kern/inc/malloc.h from Project 1.
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what misbehave() does, the hypervisor should enable the user code to invoke that
system call in the guest kernel even if your kernel has no idea what misbehave()

does.

33. Now you’re ready to try running a real guest kernel! Luckily, we have provided
“pathos” (in binary form).

34. Ensure that user code running inside a guest can’t make hypercalls, also that guest
kernels can’t make non-hypercall system calls (it would probably be bad if a guest
kernel called fork()).

35. If you cut some corners earlier (e.g., in virtual consoles), now might be a good time
to re-visit those decisions.

36. Clean up code.

37. Celebrate!

6 Grading

In Spring 2011, the first time we issued a paravirtualization P4, only a small number of
groups were able to support a complete guest kernel. Since then we have restructured
the project to substantially reduce the overall amount of work and also the amount of
infrastructure work that must be done before the first payload can be launched. Based
on results obtained in several semesters, we believe it is possible for most groups to reach
the point of being able to run P1 game kernels (even if their performance is poor—don’t
worry if you observe that). We plan to award nearly full credit (e.g., approximately 95%)
for submissions that can run P1-relevant test payloads and faithfully run the “Gomoku”
game payload.

In terms of how to best use your time, we suggest you aim to have an identifiable set
of guest payloads that can reliably be launched, run, and shut down (and make sure your
README actually identifies them!). Even if you don’t have any virtual-console support at
all, being able to reliably run some guest payloads indicates that you have understood key
virtualization concepts in a hands-on fashion. Virtual consoles enable you to demonstrate
running multiple guests at the same time, but we anticipate some groups might want
prioritize the ability to run an entire guest kernel+user stack. Either way, please aim
for reliability/repeatability, and don’t forget to document your design decisions in your
README.

Good luck!
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A Guide to Guest Payloads

A.1 Guest descriptions

Here is a brief description of what each guest does.

hello This guest invokes lprintf() and spins. It is the simplest test of launching a guest.

dumper This guest invokes lmm dump() and spins. It is an easy step after hello.

magic This guest invokes one hypercall, hv magic(), uses lprintf() to emit diagnostics,
and spins.

console This guest lightly tests the various console-output hypercalls.

station This guest uses virtual clock interrupts to print out the lyrics to a song.

tick tock This guest exercises virtual timer and keyboard interrupts.

gomoku This P1 game guest relies on console output, keyboard input, and timer
interrupts.

flayrod This guest lightly tests delivery of virtual page faults in the “Boot VM.”

cliff This guest generates a fatal exception.

teeny This guest establishes a small and simple virtual address space.

vast This guest establishes a genuinely large virtual address space, examines its contents,
and then exits.

warp This guest establishes a non-direct-mapped virtual address space, makes a hypercall
designed to test hypervisor address translation, and then exits.

fondle This guest manipulates its virtual address space in multiple ways, then exits.

pathos This guest is the Project 2 reference kernel, adjusted to run as a PebPeb guest
instead of on hardware. It has been built with a hopefully-useful selection of test programs.
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A.2 Guest feature table

Here is a table briefly summarizing the features that various guest payloads use and what
is expected to happen when each is run.

Payload lprintf magic exit print setidt iret dis/en Timer Kbd setpd adjustpg U-mode Result Source?
hello Y loops Y
dumper Y loops Y
magic Y Y loops Y
console Y Y Y Y 77 Y
station Y Y Y Y 0 Y
tick tock Y Y Y Y Y Y loops Y
gomoku Y Y Y Y Y Y 0 No
flayrod Y 0 Y
cliff Y 0xdeadcode Y
teeny Y Y K crashes Y
vast Y Y Y K 99 Y
warp Y Y Y K 0xfaded Y
fondle (v2) Y Y Y Y K,U Y Y 1 Y
pathos Y Y Y Y Y Y Y Y K,U Y Y 0 No
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