Lexical Analysis
&
Parsing (1)

15-411/15-611 Compiler Design
Seth Copen Goldstein

September, 27 2021

© 2019-21 Goldstein

Today

e Lexing
e Parsing

Today — part 1

Lexing

Flex & other scanner generators
Regular Expressions

Finite Automata

RE — NFA

NFA — DFA

DFA — Minimized DFA

Limits of Regular Languages

© 2019-21 Goldstein

Compiler Phases

The Lexer

e Turn stream of characters into a stream of
tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)
{
static char buffer[128]; /* format buffer */
char* p = buffer;

CHAR STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI
CHAR STAR ID EQ ID SEMI ..

15-411/611 © 2019-21 Goldstein

The Lexer

e Turn stream of characters into a stream of
tokens

— Strips out “unnecessary characters”
e comments
e whitespace
— Classify tokens by type
e keywords
e numbers
e punctuation
e identifiers

— Track location
— Associate with syntactic information

15-411/611 © 2019-21 Goldstein

The Lexer

e Turn stream of characters into a stream of
tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)
{
static char buffer[128]; /* format buffer */
char* p = buffer;

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI
CHAR STAR ID EQ ID SEMI ..

15-411/611 © 2019-21 Goldstein

The Lexer

e Turn stream of characters into a stream of
tokens

// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc: :helpkey (WhichKey keytype, bool includebraks)

{

static char buffer[128]; /* format buffer */
char* p = buffer;

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK
CHAR STAR ID EQ ID SEMI ..

15-411/611 © 2019-21 Goldstein

The Lexer

e Turn stream of characters into a stream of
tokens

— More concise
— Easier to parse

—

CHAR [STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK
CHAR STAR ID EQ ID SEMI ..

15-411/611 © 2019-21 Goldstein 9

Lexical Analyzers

e Input: stream of characters
e Qutput: stream of tokens (with information)

e How to build?

— By hand is tedious
— Use Lexical Analyzer Generator, e.g., flex

e Define tokens with regular expressions

e Flex turns REs into Deterministic Finite
Automata (DFA) which recognizes and returns
tokens.

© 2019-21 Goldstein

15-411/611

FLEX

e Define tokens
e Generate scanner code

e Main interface: yylex () which reads
from yyin and returns tokens til EOF

Sequence
of
tokens

Lex.l file
Orlex
Source program

Input Stream

© 2019-21 Goldstein

11

2. Flex Program Format

e A flex program has three sections:

Definitions
RE rules & actions

User code

© 2019-21 Goldstein

wc As a Flex Program

31
int charCount=0, wordCount=0, lineCount=0;
%}
word [~ \t\n]+
%%
{word} {wordCount++; charCount += yyleng; }
[\n] {charCount++; lineCount++;}
{charCount++;}
int main(void) {
yylex() ;
printf (“Chars %d, Words: %d, Lines: %d\n”,
charCount, wordCount, lineCount);
return 0O;

15-411/611 © 2019-21 Goldstein

A Flex Program

3 {
int charCount=0, wordCount=0, lineCount=0;
%}
word [~ \t\n]+
{word} {wordCount++; charCount += yyleng; }
[\n] {charCount++; lineCount++;}
{charCount++;}
int main(void) {
yylex() ;
printf (“Chars %d, Words: %d, Lines: %d\n”,
charCount, wordCount, lineCount);
return O;

15-411/611 © 2019-21 Goldstein

1) Definitions

2) Rules & Actions

3) User Code

14

Section 1: RE Definitions

* Format:
name RE
 Examples:
digit [0-9]
letter [A-Za-2Zz]
id {letter} ({letter}|{digit})*

word [* \t\n]+

© 2019-21 Goldstein

Regular Expressions in Flex

matc
matc
matc
matc
matc
matc
matc
matc
matc

n the char x

n the char.

n contents of string of chars
n any char except \n

n beginning of a line

n the end of a line

none charx,y, orz

n any char except X, y, and z

nonheofatoz

Regular Expressions in Flex (cont)

r*

r+

r?

rl r2
rl | r2
(r)

rl \ r2
{ name }

closure (match O or more r's)

positive closure (match 1 or more r's)
optional (matchOor 1r)

match rl then r2 (concatenation)
match rl or r2 (union)

grouping

match r1 when followed by r2

match the RE defined by name

© 2019-21 Goldstein

Some number REs
[0-9] A single digit.
[0-9]+ An integer.
[0-9]1+ (\.[0-9]1+)? Aninteger or fp number.

[+-1? [0-9]+ (\.[0-9]+)? ([eE][+-1?[0-9]+)7
Integer, fp, or scientific notation.

© 2019-21 Goldstein

Section 2: RE/Action Rule

* Arule has the form:
name { action }
re { action }
— the name must be defined in section 1
— the action is any C code

* If the named RE matches™ an input
character sequence, then the C code is

executed. * Some caveats here

© 2019-21 Goldstein

Rule Matching

e Longest match rule.

“int” { return INT; }
“integer” { return INTEGER; }

e If rules can match same length input,
first rule takes priority.

“int” { return INT; }
[a-z]+ { return ID; }
[0-9]+ { return NUM; }

© 2019-21 Goldstein

Section 3: C Functions

 Added to end of the lexical analyzer

© 2019-21 Goldstein

Removing Whitespace

whitespace [\t\n]
%%
name - / empty action

{whitespace} ;

, { ECHO; }
RE —

%% \

" ECHO macro

int main(void)
{

yylex();
return 0;

15-411/611 © 2019-21 Goldstein

, Printing Line Numbers
°o{

int lineno =1; the matched text
%} /
%%
(.)\n { print£("$4d\t%s", lineno, yytext);
linenot+;}
%%
int main(int argc, char *argv|])

{

// proper arg processing & error handling,
yyin = fopen(argv|[l], "r");

yylex();

return O;

}

15-411/611 © 2019-21 Goldstein 23

Today — part 1

Lexing

Flex & other scanner generators
Regular Expressions

Finite Automata

RE — NFA

NFA — DFA

DFA — Minimized DFA

Limits of Regular Languages

© 2019-21 Goldstein

Under The Covers

e How to go from REs to a working scanner?

Input to Flex Thomson’s
construction

subset
construction

Hopcroft
Partitioning

Convert to
fast scanner

15-411/611 © 2019-21 Goldstein

25

Regular Languages

e Finite Alphabet, 2, of symbols.

e word (or string), a finite sequence of symbols
from 2.

e Language over X is a set of words from 2.
e Regular Expressions describe Regular Languages.

— easy to write down, but hard to use directly

e The languages accepted by Finite Automata are
also Regular.

Regular Expressions defined

e Base Cases:
— A single character a
— The empty string €

e Recursive Rules:
If R, and R, are regular expressions

—Concatenation R.R,
—Union R;IR,
—Closure R.*
—Grouping (Ry)

e REs describe Regular Languages.

© 2019-21 Goldstein

RE Examples

even a’s
odd b’s

even a’s or odd b’s
even a’s followed by odd b’s

© 2019-21 Goldstein

RE Examples

even a’s

b*(ab*ab*)*
odd b’s

a*ba*(ba*ba*)*
even a’s or odd b’s
even a’s followed by odd b’s

© 2019-21 Goldstein

RE Examples

even a’s

RA=Db*(ab*ab*)*
odd b’s

RE=a*ba*(ba*ba*)*
even a’s or odd b’s

RA | RB
even a’s followed by odd b’s

RA RB

© 2019-21 Goldstein

Today — part 1

Lexing

Flex & other scanner generators
Regular Expressions

Finite Automata

RE > NFA

NFA — DFA

DFA — Minimized DFA

Limits of Regular Languages

© 2019-21 Goldstein

Finite Automata
e finite set of states

e set of edges from states to states labeled
by letter from X

e initial state
e set of accepting states

e How it works:

— Start in initial state, on each character
transition goto state using edge labeled for
that character.

— If at end of word we are in accepting state, the
word is in language

— Language accepted are strings that cause FA to

222222222222222

Example REs - FA

e even a’s b*(ab*ab*)*

e odd b’s a*ba*(ba*ba*)*

© 2019-21 Goldstein

Example REs - FA

® even a’s b*(ab*ab*)*
ib f I b
d
e odd b’s a*ba*(ba*ba*)*

SoNe

34

Example REs - FA

even a’s b*(ab*ab*)*
ib f l b
d
odd b’s a*ba*(ba*ba*)*

a , 3
even a’s or odd b’s “@
RA | RB 5

even a’s followed by odd b’s
RA R®

© 2019-21 Goldstein

Converting RE to NFA: Base Case
e for acX the NFA M_= {2, {sy,5:}, 6, S, {S¢}}

e for e the NFA M_={Z, {s,,5¢}, 6, So, {S¢}}
Os

© 2019-21 Goldstein

Recursive Case

e for RE R with M, ={Z, s, &, ry, F.} and
RE S with M, =1{%, s, 6, S, F.}

© 2019-21 Goldstein

R[S

e for RE R with M, ={Z, s, &, ry, F.} and
RE S with M, =1{%, s, 6, S, F.}

(vie(®)
65

* Mgis =12, sgU s; U {mg, Mg}, Ogys, Mo, My}

5

© 2019-21 Goldstein

R[S

e for RE R with M, ={Z, s, &, ry, F.} and
RE S with M_= {3, s, &, S, F.}

© 2019-21 Goldstein

RS

e for RE R with M, ={Z, s, &, ry, F.} and
RE S with M, =1{%, s, 6, S, F.}

(vie(®)
OO0

* M. =12, sp U sc U {mg,, mg}, Ogrs, My, My}

:

© 2019-21 Goldstein

RS

e for RE R with M, ={Z, s, &, ry, F.} and
RE S with M_= {3, s, &, S, F.}

00

* M. =12, sp U sc U {mg,, mg}, Ogrs, My, My}

© 2019-21 Goldstein

R *
e for RE R with Mg = {%, s, &, ro, F,}

* M. ={2, sp U {m,, mg}, &gs, My, M}

© 2019-21 Goldstein

R *
e for RE R with Mg = {%, s, &, ro, F,}

€

€ 6R
OmOuOa0

€

e M. ={%, sp U {m,, mg}, &z«, My, M}

© 2019-21 Goldstein

Example REs - FA

even a’s b*(ab*ab*)*
ib f l b
d
odd b’s a*ba*(ba*ba*)*

a , 3
even a’s or odd b’s “@
RA | RB 5

even a’s followed by odd b’s
RA R®

© 2019-21 Goldstein

Example of Thompson’s Construction

Let’'strya(b | c)’

1. a,b, & c

2. b|c

© 2019-21 Goldstein

Example of Thompson’s Construction

Let’'strya(b | c)’

1. 3, b, & C
O OF
2. b|c gcg

© 2019-21 Goldstein

Example of Thompson’s Construction

We could do a bit better. ©

© 2019-21 Goldstein

Example of Thompson’s Construction

© 2019-21 Goldstein

Today — part 1

Lexing

Flex & other scanner generators
Regular Expressions

Finite Automata

RE — NFA

NFA — DFA

DFA — Minimized DFA

Limits of Regular Languages

© 2019-21 Goldstein

RE —5 NFA —» DFA

Can’t directly execute Non-deterministic FA
Need to convert NFA to DFA

Essentially, we will build a DFA that
simulates the NFA

Key idea: Keep track of all possible NFA
states we could be in at each step:
the set of all possible NFA states

222222222222222

Subset construction

e startin state { s, }.

e For each edge create a set of all states that
can be reached. Continue until done.

e All sets that contain an NFA accepting state
are accepting.

© 2019-21 Goldstein

Lets first deal with ¢ edges

e e-closure: all states that can be reached
only along e-edges:
e Computing e-closure(s) for seS:
— initialize all e-closure(s) ={ s}
— while some e-closure(s) changed
foreach seS:

foreach q € e-closure(s) :
e-closure(s) = e-closure(s) U 6(q, €)

e Terminates?

© 2019-21 Goldstein

Subset Construction

e NFA:{Z,Q, 6, q, F} > DFA: {3, S, A, sy, F'}

S, <—€-closure(q,)
while 3 unmarked s € S:
mark s
foreacha € 2
t < e-closure(Move(s, a))
ift ¢ S:
addttoS
A(s,a) «t

© 2019-21 Goldstein

Subset Construction

e NFA:{Z,Q, 6, q, F} > DFA: {3, S, A, sy, F'}

S, <—€-closure(q,) Movels, a)
while 3 unmarked s € S: the set of states
reachable from s by a

mark s
foreacha e 2
t «—e-closure(Move(s, a))
ift g S:
addtto S
A(s,a) «t

© 2019-21 Goldstein

Subset Construction

e NFA:{Z,Q, 6, q, F} > DFA: {3, S, A, sy, F'}

S, <—€-closure(q,)

while 4 unmarked s € S:

mark s
foreacha € 2

Why does this terminate?

t «—e-closure(Move(s, a))

ift ¢ S:
add tto S
A (s,a) <t

© 2019-21 Goldstein

Subset Construction

e NFA:{Z,Q, 6, q, F} > DFA: {3, S, A, sy, F'}
e Example of a fixed point computation

— Sis finite, at most ?

— Always add to S, i.e., while loop is monotone

— no duplicates in S
— stop when S stops changing

e Other fixed point computations:
— Constructing LR(1) items
— Many Dataflow analysis (e.g., liveness)

example of subset construction
a(b|c)*:

e
DFA
States
So 0

Move(sy,a)?

15-411/622 . 02019 -21 Goldstein

example of subset construction

15-411/611 © 2019-21 Goldstein

example of subset construction

S, 1, 2, 3,4,

15-411/611 © 2019-21 Goldstein

example of subset construction
a(b|c)*:

e
EAE
States
So 0 1, 2, 3,4, - -
6, 9
S, 1, 2, 3,4, - 5

6,9

e-closure?

15-411/622 . 02019 -21 Goldstein

example of subset construction
a(b|c)*:

e
DFA
States
So O 1, 2, 3, 4, = =
6,9

s, 1,2,3,4, . 5,3, 4, 6,
6,9 8,9

15-411/611 © 2019-21 Goldstein

example of subset construction

0

1,2,3,4,
6,9

5) 3) 4) 6I
3,9

7) 3) 4) 6’
3,9

- 5; 3; 4) 6) 7) 3) 4) 61
3,9 3,9

© 2019-21 Goldstein

example of subset construction

0

1,2,3,4,
6,9

5) 3) 4) 6I
3,9

7) 3) 4) 6’
3,9

- 5; 3; 4) 6) 7) 3) 4) 61
3,9 3,9

© 2019-21 Goldstein

example of subset construction

0

1,2,3,4,
6,9

5) 3) 4) 6I
3,9

7) 3) 4) 6’
3,9

11 21 31 41 N -
6,9
- 5; 3; 4) 6) 7) 3) 4) 61
3,9 3,9
- 52

© 2019-21 Goldstein

rest? 8,9
15-411/611

example of subset construction

So 0 1, 2, 3, 4, - -
6,9
S, 1, 2, 3,4, - 5,3,4,6, 7,3,4,6,
6,9 8,9 8,9
S, 5,3,4,6, - S, Sy
8,9

s, 7,3,4,6,

© 2019-21 Goldstein

example of subset construction

So 0 1, 2, 3, 4, - -
6,9
S, 1, 2, 3,4, - 5,3,4,6, 7,3,4,6,
6, 9 8,9 8,9
S, 5,3,4,6, - S, Sy
8,9
S, /,3,4,6, - S, S3

Final? 8 9
15-411/611

© 2019-21 Goldstein

example of subset construction

So 0 1, 2, 3, 4, - -
6,9
S, 1, 2, 3,4, - 5,3,4,6, 7,3,4,6,
6,9 8,9 8,9
S, 5,3,4,6, - S, Sy
3,9
S, /,3,4,6, - S, S3

Final? 89
15-411/611

© 2019-21 Goldstein

example of subset construction

So 0 1, 2, 3, 4, - -
6,9
S, 1, 2, 3,4, - 5,3,4,6, 7,3,4,6,
6,9 8,9 8,9
S, 5,3,4,6, - S, Sy
3,9
S, /,3,4,6, - S, S3

3,9

© 2019-21 Goldstein

example of subset construction
a(b|c)*:

6,9
Sq 1, 2, 3, 4, - 5,3,4,6, 7,3,4,6,
6,9 8,9 8,9
52 5; 3; 41 61 - SZ S3
8,9
53 7; 31 4; 6; - SZ S3

8,9

Today — part 1

Lexing

Flex & other scanner generators
Regular Expressions

Finite Automata

RE — NFA

NFA — DFA

DFA — Minimized DFA

Limits of Regular Languages

© 2019-21 Goldstein

DFA Minimization

e Partition states into equivalent sets
e Two states are equivalent iff:

— paths entering them are the same
— VY a €2, transitions lead to equivalent states
e transition on a to different sets = different states.

DFA Minimization

e Plan:
— start with maximal sets: {Q}and {Q—-F }
— partition sets for each a €2 until no change
— paritions become new states of minimized DFA

o ”

e Partitioning a set on “o
—Assume q,, & q, € s, and o(q,,a) = q, & o(q,, o) =q,

—If g, & g, are not in the same set, then s must be split
(g, has transition on a, q, does not = a. splits s)

e One state in the final DFA cannot have two
transitions on o

15-411/611 © 2019-21 Goldstein

DFA Minimization

P« {F,{Q-F}}
while (P is still changing)
T« {}
for eachsetS € P
foreach o € X
partition Sby ainto S, S,, ..., S,
T<TUS US,U...US,
if T# P then
P« T

© 2019-21 Goldstein

15-411/611

DFA Minimization

P« {F, {Q-F}}

while (P is still changing) Another Fixed Point Alg
T« {} Terminates:
for each setS € P - maximum of 212l sets
foreacha € X - Always adding to P
partitionSby ainto S;, S,, ..., S, - Never combining setsin P
T« TUSUS U...US,
if T# P then Initial partition ensures that
P«T final states remain final.

Hopcroft’s worklist algorithm is efficient.

© 2019-21 Goldstein

77

Today — part 1

Lexing

Flex & other scanner generators
Regular Expressions

Finite Automata

RE — NFA

NFA — DFA

DFA — Minimized DFA

Limits of Regular Languages

© 2019-21 Goldstein

Regular Languages

e Regular Expressions are great
— concise notation
— automatic scanner generation
— lots of useful languages

e But, ...

— Not all languages are regular
e Context Free Languages
e Context Sensitive Languages

— Even simple things like balanced parenthesis,
e.g., L={AkBk} (or nested comments!)

— RL can’t count

15-411/611 © 2019-21 Goldstein

Not all Scanning is easy

e anguage design should start with lexemes

— My favorite example from PL/I
1f then then then = else; else else = then

e blanks not important in Fortran
e nested commentsin C
e limited identifier lengths in Fortran

© 2019-21 Goldstein

Today — part 2

Parsing

e Languages and Grammars

e Context Free Grammars

e Derivations & Parse Trees

e Ambiguity

e Top-down parsers

e FIRST, FOLLOW, and NULLABLE
e Bottom-up parsers

© 2019-21 Goldstein

Compiler Phases

Abstract syntax tree

=

15-411/611

Languages
Compiler translates from sequence of
characters to an executable.
A series of language transformations
lexing: characters — tokens
parsing: tokens — “sentences”

kids | threw | vegetables

%% %
trash
é’&

© 2019-21 Goldstein

83

Languages
e Compiler translates from sequence of
characters to an executable.
e A series of language transformations
e |exing: characters — tokens
e parsing: tokens — parse trees

kids | threw | vegetables

%% %
trash
é’&

15-411/611 © 2019-21 Goldstein

84

Grammars and Languages

e A grammar, G, recognizes a language, L(G)

-2 set of terminal symbols
- A set of non-terminals
- S the start symbol, a non-terminal
- P a set of productions
e Usually,

-, B, 7, ... strings of terminals and/or non-terminals
— A, B, C, ... are non-terminals
—a, b, c .. areterminals

e General form of a productionis: oo — [3

15-411/611 © 2019-21 Goldstein

86

Derivation

e A sequence of applying productions starting with
S and ending with w

5=V, >V, >V W
S >*w
e [(G) are all the w that can be derived from S

© 2019-21 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G., a*bc*
S —>aS
S = bA
A— €
A - cA

e An example derivation of aabc:
S—>as

© 2019-21 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar
e E.G., a*bc*
S—>asS
S = bA

A— €
A - CcA

e An example derivation of aabc:
S 2 aS—> aa$s

© 2019-21 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar
e E.G., a*bc*
S—>as
S =2 bA

A— €
A - CcA

e An example derivation of aabc:
S = aS—> aaS—> aabA

© 2019-21 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar
e E.G., a*bc*
S—>as
S = bA

A— €
A - CcA

e An example derivation of aabc:
S - aS—> aaS—> aabA—> aabcA

© 2019-21 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar
e E.G., a*bc*
S—>as
S = bA

A— €
A - CcA

e An example derivation of aabc:
S = aS—> aaS—> aabA—-> aabcA - aabc

© 2019-21 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e E.G., a*bc*
S—>asS
S = bA
A€
A - cA
e Above is a right-regular grammar
e All rules are of form: A—a
A - aB

A—¢€

© 2019-21 Goldstein

Regular Grammar (NFA)

e Regular expressions and NFAs can be
described by a regular grammar

e right regular grammar: A—a
A — aB
A—e

e |eft regular grammar: A—a
A - Ba
A—e

e Regular grammars are either right-regular
or left-regular.

© 2019-21 Goldstein

15-411/611

Expressiveness

Restrictions on production rules limit
expressiveness of grammars.

No restrictions allow a grammar to
recognize all recursively enumerable
languages

A bit too expressive for our uses ©
Regular grammars cannot recognize a"b"
We need something more expressive

© 2019-21 Goldstein

95

Chomsky Hierarchy

llword”
Class Language Automaton problem

Recursively Turing HENEE
0 Enumerable Machine any undecidable Corresp.
problem
Context Linear- PSPACE- I
1 Sensitive Bounded TM ali=eE complete D
2 Context Free Pushdown A—a cubic anb"
Automata
3 Regular NFA A—a linear a’b’

A—aB

15-411/611 © 2019-21 Goldstein 96

Today — part 2

e Languages and Grammars

e Context Free Grammars

e Derivations & Parse Trees

e Ambiguity

e Top-down parsers

e FIRST, FOLLOW, and NULLABLE
e Bottom-up parsers

© 2019-21 Goldstein

Context-Free Grammar

e A context-free grammar, G, is described by:

— 2, a set of terminals (which are just the set of
possible tokens from the lexer)
e.g.,,1f, then,while, 1d, 1nt, string, ...

— A, a set of non-terminals.
Non-terminals are syntactic variables which
define sets of strings in the language
e.g., stmt, expr, term, factor, varded|, ...

-5
—p

Context-Free Grammar

e A context-free grammar, G, is described by:

— 2, a set of terminals ...
— A, a set of non-terminals.

—S,S € A, the start symbol
The set of strings derived from S are the valid
string in the language.

— P, set of productions that specify how
terminals and non-terminals combine to form
strings in the language
a production, p, has the form: A—> o

Context-Free Grammar

e A context-free grammar, G, is described by:
— 2, a set of terminals ...
— A, a set of non-terminals.
—S,S € A, the start symbol

— P, set of productions ...
a production, p, has the form: : A—> o

—E.g.,: S:=E
S:=printtE

E—E+T
4 erminals

non- ’rermnnals

© 2019-21 Goldstein

What makes a grammar CE?

e Only one NT on left-hand side — context-free
e What makes a grammar context-sensitive?

e aAB—ayp where
— o or [3 may be empty,
— but y is not-empty

e Are context-sensitive grammars useful for
compiler writers?

Simple Grammar of Expressions

S = Exp

Exp = Exp + EXp
EXp = EXp - Exp
Exp .= Exp * Exp
Exp .= Exp / Exp
Exp = 1d

EXp = 1int

Describes a language of expressions. e.g.: 2+3*x

© 2019-21 Goldstein

Derivations

e A sequence of steps in which a non-terminal is
replaced by its right-hand side.

1 §._ . -Fwvn S

2 Ex There are possibly many derivations
determined by the NT chosen to (P

3 B> expand.

4 Exp:= Exp * Exp vy v —cap =dy

5 Exp:= Exp / Exp by 2 = Exp + Exp * id,

6 EXp!: id by 7 = int, + Exp * id,

/ EXP:: int by 7 = int, + int3 * id,

© 2019-21 Goldstein

Leftmost Derivations

e Leftmost derivation: leftmost NT always chosen

NONOC b W N

S =Exp

Exp:= Exp + Exp
Exp:= Exp - Exp
Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Exp:= int

S
by 1 = Exp
by 4 = Exp * Exp
by 2 = Exp + Exp * Exp
by 7 = int, + Exp * Exp
by 7 = int, + int3; * Exp

by 6 — lnt2 + lnt3 x ldx

© 2019-21 Goldstein

Rightmost Derivations

e Rightmost derivation: rightmost NT always

NONOC b W N

chosen

S =Exp

Exp:= Exp + Exp
Exp:= Exp - Exp
Exp:= Exp * Exp
Exp:= Exp / Exp
Exp:= id

Exp:= int

S
by 1 = Exp
by 4 = Exp * Exp
by 6 = Exp * id,
by 2 = Exp + Exp * id,
by 7 = Exp + int3 * id,

by 7 — lnt2 + lnt3 x ldx

© 2019-21 Goldstein

Parse Trees

e symbols in rhs are children of NT being

rewritten
: ©
by 1 = Exp G

by 4 = Exp * Exp

by 2 = Exp + Exp * Exp G c G
by 7 = int, + Exp * Exp
by 7 = int, + int3; * Exp GGG °

by 6 — lnt2 + lnt3 x ldx e e

© 2019-21 Goldstein

Parse Trees

e parse tree for rightmost derivation

S
by 1 = Exp

by 4 = Exp *
by 6 = Exp
by 2 = Exp + Exp * id,
by 7 = Exp + int3 * id,

by 7 — intz + 1nt3 x 1dX

Ambiguous Grammars

sentence with >1 parse trees. or,

e If grammer has >1 leftmost (rightmost)
derivations it is ambiguous

Converting Expression Grammar

e Adding precedence with more non-
terminals

e One for each level of precedence:
- (+,-) exp
- (*, /) term
— (1d, int) factor

— Make sure parse derives sentences that
respect the precedence

— Make sure that extra levels of precedence can
be bypassed, i.e., “x” is still legal

© 2019-21 Goldstein

A Better Exp Grammar

1S .= Exp S

2 Exp .= Exp + Term by 1 = Exp

3 Exp := Exp - Term by 2 = Exp + Term

4 Exp :=Term by 4 = Term + Term
5 Term :=Term * Factor by 7 = Factor + Term
6 Term :=Term / Factor by 9 = int,+ Term

/ Term :=Factor

' *
8 Factor :=id bY 5= int, + Term Factor

9 Factor :=int by 7 = int, + Factor * Factor

by 9 = int, + int; * Factor

by 8 — lnt2 + lnt3 x ldx

What is the parse tree?

15-411/611 © 2019-21 Goldstein 111

S

15-411/611

Another Ambiguous Grammer

= 1f E thenS
| ifEthenSelseS
| other

What is the parse tree for:
ifEthen ifEthenSelseS?

What is the language designers intention?

Is there a context-free solution?

© 2019-21 Goldstein

112

Dangling Else Grammar

S := matchedS
| unmatchedS
unmatchedS:= ifE thenS$S
| if E then matchedS else unmatchedS
matchedS .= if E then matchedS else matchedS
| other

e |s this clearer?

e What is parse treefor: if E then if E thenSelseS?

15-411/611 © 2019-21 Goldstein 113

15-411/611

Parsing a CFG

e Top-Down
— start at root of parse-tree
— pick a production and expand to match input
— may require backtracking
— if no backtracking required, predictive

e Bottom-up
— start at leaves of tree
— recognize valid prefixes of productions

— consume input and change state to match
— use stack to track state

© 2019-21 Goldstein

116

Top-down Parsers

e Starts at root of parse tree and recursively
expands children that match the input

* In general case, may require backtracking
e Such a parser uses recursive descent.

e \When a grammar does not require
backtracking a predictive parser can be
built.

© 2019-21 Goldstein

- W

A Predictive Parser

BSF

b
f

IO

BO) {
FO {

if match('b") -> B(); S(); F(); action();

else return:;

mustMatch('b’); action(); return;}
mustMatch('f'); action(); return;}

© 2019-21 Goldstein

Top-Down parsing

e Start with root of tree, i.e., S
e Repeat until entire input matched:

— pick a non-terminal, A, and pick a production
A—y that can match input, and expand tree

— if no such rule applies, backtrack

e Key is obviously selecting the right
production

© 2019-21 Goldstein

Top-down for Exp Grammar

S int, - int; * id,

=E+T byl= E int, - int; * id,

O oO~NO O NwN
MM 4 44 mMmMmmMm®»
S . ..

.._l

*

)

15-411/611 © 2019-21 Goldstein 120

Top-down for Exp Grammar

O 00O NONOl W N =

MMM 44 4 mMmMmmMmW0

S lint, - int; * id,
byl= E lint, - inty * id,
by2= E+T lint, - int; * id,
byd—= T+T |int, - int; * id,
by 7= F+T |int, - int3 * id,

by 9= int, + T

intzl' int3 * ldx

15-411/611

© 2019-21 Goldstein

121

Top-down for Exp Grammar

O 00O NONOl W N =

MM 4 44 mMmMmmMm®»

S
byl= E

int, - int; * id,

int, - int; * id,

by2= E+T
byd—= T+T
by 7= F+T
by 9= int,+ T

int, - int; * id,
int, - int; * id,
int, - int; * id,

int,|- int; * id,

15-411/611

by3= E-T
by4d—= T-T
by 7= F-T
by 9 = int,-T

int, - int; * id,
int, - int; * id,
int, - int; * id,

int,l- int; * id,

by5:> intZ-T*F

© 2019-21 Goldstein

int, - int; * id,

122

Top-down for Exp Grammar

1 S - E S Ilntz - int3 * ldx
> E:=E+T byl= E lint, - inty * id,
3 E::E_T bYZ: E"'T Iintz'int3*idx
4 E:=T by4—= T+T |int, - int; * id,
5 T::T*F by7: F"‘T Iintz'int3*idx
2 ; = T / F by 9 = intz + T intzl' int3 * ldx
8 F ;ld by3: E'T Iintz'int3*idx
9 F = int by 4 = T - T Ilntz - int3 * ldx

by7: F'T Iintz'int3*idx

by 9 = int, - T int,l- int; * id,

15-411/611 © 2019-21 Goldstein 123

Top-down for Exp Grammar

1 S <F S int, - int; * id,
2 E:=E+T byl= E int, - int; * id,
3 E::E_T by2:> E"‘T intz'int3*idx
4 E = by2—= E+E+T int, - int; * id,
5 T:=T*F by2= E+E+E+T int, - int; * id,
6 T:=T/F

7 T:=

8 Fi=id Will not terminate! Why?

9 F :=int

grammar is left-recursive
What should we do about it?

Eliminate left-recursion

15-411/611 © 2019-21 Goldstein 124

15-411/611

Does this work?

1 S:=E 1 S:=E

2 E=E+T 2 E =T+E
3 E=E-T 3 E:=T-E
4 E =T 4 E =T
5 T:=T*F > 5 Tu=F*T
6 T:=T/F 6 T=F/T
7 Ti=F 7 T:=F

8 F :=id 8 F :=id
9 F :zint O F :zint

It is right recursive, but also right associativel

© 2019-21 Goldstein

125

Eliminating Left-Recursion

e Given 2 productions:
A=Aao|p
Where neither o nor [3 start with A

(e.g., Forexample, E:=E+T | T)

e Make it right-recursive: v

A:=pR
R:=0R |Ris right recursive

e Extends to general case.

© 2019-21 Goldstein

Rewriting Exp Grammar

O 00 N O U1 & W N B

MMM M 4 4 4 m m m OB

15-411/611

1 S:=E

2' E=+TF
33 E=-TFE
4 FE':=

5 T:i=*FT
6 T:=/FT
7' Tz

8 F :=id
9 F :=int

|

2 E=TFE

5 T:=FT

© 2019-21 Goldstein

127

Try again

S ®int, - int; * id,

_— ; CTE by2= TFE ®int, - int; * id,

3: Ec = T En by 5 = F T' E' .intz - int3 x ldX

4 FE = by9=2TEFE int, ®- int; * id,

5 T:=FT by 7 = 2F int, ®- int; * id,

5 T:=*FT | by33=2-TF int, - ®int; * id,

6, ;‘:/FT by5=2-FTFE int, - ®int; * id,

g F -'d by9=2-3TFE int, - int; ®* id,
-1

9 F :-int by5 =2-3*FTFE int, - int; * @id,

: int; * id @

int; * id @

int; * id @

15-411/611 © 2019-21 Goldstein 128

L.ookahead

How to pick right production?

Lookahead in input stream for guidance

General case: arbitrary lookahead required

f we have A > a |

Luckily, many context-free grammars can
e parsed with limited lookahead

3, then we want to

correctly choose either A—> o orA —f3

e define FIRST(a) as the set of tokens that
can be first symbol of q, i.e.,
a € FIRST(a) iff o >* ay for some y

© 2019-21 Goldstein

L.ookahead

How to pick right production?

If we have A — o | 3, then we want to
correctly choose either A—> o orA —f3

define FIRST(a) as the set of tokens that
can be first symbol of q, i.e.,
a € FIRST(a) iff o >* ay for some y

If A— o | B we want:
FIRST(at) N FIRST(B) = &

If that is always true, we can build a
predictive parser.

© 2019-21 Goldstein

Computing FIRST (o)
e Given X := ABC, FIRST(X) = FIRST(A B C)
e Can we ignhore B or C?

e Consider:
A:=a

© 2019-21 Goldstein

Computing FIRST (o)
e Given X := ABC, FIRST(X) = FIRST(A B C)
e Can we ignhore B or C?

e Consider:
A:=a

| A
C:=c

e FIRST(X) must also include FIRST(C)

e [IOW:
— Must keep track of NTs that are nullable

15-411/622 . ©2019-21Goldstein

nullable(A)

e nullable(A) is
— true if A can derive the empty string

— false otherwise

e For example:

B:=XYb
X =X

| YY
Y =

In this case, nullable(X) = nullable(Y) = true
nuIIabIe(B) false

222222222222222

FOLLOW(A)

e FOLLOW(A) is the set of terminals that can
immediately follow A in a sentential form.

° |.e,
a € FOLLOW(A) iff S =* aAaf3 for some o and f3

Building a Predictive Parser

e \We want to know for each non-terminal which
production to choose based on the next input
character.

e Build a table with rows labeled by non-terminals,
A, and columns labeled by terminals, a. We will
put the production, A :=a, in (A, a) iff
— FIRST(ot) contains a or
— nullable(a) and FOLLOW(A) contains a

© 2019-21 Goldstein

The table for the robot

S =BSF FIRST |FOLLOW |nullable
| S|b $ yes
B -=b B|b b,f no
I F|f f.$ no
b f %
S
B
F

S

B

The table for the robot

:=BSF

|
=b

FIRST(BSF) = b

FIRST |FOLLOW |nullable
S|b $ yes
B|b b,f no
F |f f.$ no

/~~{ nullable(e)=true

and
f } /_ FOLLOW(S) = $

© 2019-21 Goldstein

VW ENOOhWNN =

MM A A4 A4 4 mMmmmmw

Table{ [FIRST [FOLLOW [nullable
S |id,int |$
E |id,int |$
TE E' |+, - $ yes
f'Trg T [id,int [+-$
T/, % +-.% yes
FT F lid,int |/, *$
FT N /[id | int | $
/FT S
id E
int E
=
=
-

15-411/611

© 2019-21 Goldstein

139

Table 1

VW ENOOhWNN =

MM A A4 A4 4 mMmmmmw

15-411/611

FIRST |FOLLOW |nullable

S |id,int |$

E |id,int |$

E' |+, - $ yes

T |id, int |+-$

T/, * +-.% yes

F |id, int |/, *%

+ - / id | int $
S =F |=E
E =TE [=TE
e =+TE' [=-TE' -
T =FT [=FT
T k= = =*FT=/FT =
F :=id |=int

© 2019-21 Goldstein

140

Using the Table

e Each row in the table becomes a function

e For each input token with an entry:
Create a series of invocations that
implement the production, where

— a hon-terminal is eaten
— a terminal becomes a recursive call

e For the blank cells implement errors

© 2019-21 Goldstein

Example function

+ - x / id int $
S =B [=E
E =TE' [=TE
|E =+TE' [=-TE' =TE' [=TE' |=
u g~ >
. 5 ::*FTIHOW To aln eelr'r'or's..
F | t=id k=int | |
Eprime () {
switch (token) ({
case PLUS:
case MINUS:
case ID: T(); Eprime() ;
case INT: T(), Eprime() ;
default: error () ;

15-411/611

eat (PLUS); T(); Eprime(); break;
eat (MINUS); T();, Eprime(); break;

© 2019-21 Goldstein

142

Left-Factoring

Predictive parsers need to make a choice
based on the next terminal.

Consider:
S:=1f E then S else S
| if E then S

When looking at 1 £, can’t decide
so |left-factor the grammar

S:=1f E then S X
X =else S

© 2019-21 Goldstein

Top-Down Parsing

e Can be constructed by hand

e LL(k) grammars can be parsed
— Left-to-right
— Leftmost-derivation

— with k symbols lookahead

e Often requires
— |eft-factoring
— Elimination of left-recursion

© 2019-21 Goldstein

