Lexical Analysis & Parsing (1)

15-411/15-611 Compiler Design

Seth Copen Goldstein

September, 27 2021

Today

- Lexing
- Parsing

Today – part 1

Lexing

- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

Turn stream of characters into a stream of tokens

```
// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey
char*
ArgDesc::helpkey(WhichKey keytype, bool includebraks)
{
    static char buffer[128]; /* format buffer */
    char* p = buffer;
    ...
```

CHAR STAR ID DOUBLE_COLON ID LPARIN ID ID COMMA BOOL ID RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI CHAR STAR ID EQ ID SEMI ...

- Turn stream of characters into a stream of tokens
 - Strips out "unnecessary characters"
 - comments
 - whitespace
 - Classify tokens by type
 - keywords
 - numbers
 - punctuation
 - identifiers
 - Track location
 - Associate with syntactic information

Turn stream of characters into a stream of tokens

```
// create a user friendly descriptor for this arg.
// if key is absent, then use it. Otherwise use longkey

char*
ArgDesc::helpkey(WhichKey keytype, bool includebraks)
{
    static char buffer[128]; /* format buffer */
    char* p = buffer;
    ...
```

```
CHAR STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI
CHAR STAR ID EQ ID SEMI ...
```

Turn stream of characters into a stream of tokens

```
// create a user friendly descriptor for this arg.
     // if key is absent, then use it. Otherwise use longkey
    char*
    ArgDesc::helpkey(WhichKey keytype, bool includebraks)
        static char buffer[128]; /* format buffer */
        char* p = buffer;
                                     Position: 5,40
Position: 4,0
                                     text: "includebraks"
    CHAR STAR ID DOUBLE COLON ID LPARIN ID ID COMMA BOOL ID
    RPARIN LBRACE STATIC CHAR ID LBRAK INTCONST RBRAK SEMI
    CHAR STAR ID EQ ID SEMI ...
                                  Position: 6,23
                                  value: 123
```

- Turn stream of characters into a stream of tokens
 - More concise
 - Easier to parse

Lexical Analyzers

- Input: stream of characters
- Output: stream of tokens (with information)
- How to build?
 - By hand is tedious
 - Use Lexical Analyzer Generator, e.g., flex
- Define tokens with regular expressions
- Flex turns REs into Deterministic Finite
 Automata (DFA) which recognizes and returns tokens.

- Define tokens
- Generate scanner code
- Main interface: yylex() which reads from yyin and returns tokens til EOF

11

2. Flex Program Format

A flex program has three sections:

Definitions

응응

RE rules & actions

응응

User code

12

wc As a Flex Program

```
용 {
  int charCount=0, wordCount=0, lineCount=0;
용 }
word [^ \t\n]+
응응
{word} {wordCount++; charCount += yyleng; }
[\n] {charCount++; lineCount++;}
       {charCount++;}
응응
int main(void) {
   yylex();
   printf("Chars %d, Words: %d, Lines: %d\n",
      charCount, wordCount, lineCount);
   return 0;
```

A Flex Program

```
용 {
  int charCount=0, wordCount=0, lineCount=0;
응 }
       [^ \t\n]+
word
응응
{word} {wordCount++; charCount += yyleng; }
[\n] {charCount++; lineCount++;}
       {charCount++;}
응응
int main(void) {
   yylex();
   printf("Chars %d, Words: %d, Lines: %d\n",
      charCount, wordCount, lineCount);
   return 0;
```

1) Definitions

2) Rules & Actions

3) User Code

15-411/611 © 2019-21 Goldstein 14

Section 1: RE Definitions

Format:

name RE

Examples:

```
digit [0-9]
letter [A-Za-z]
id {letter} ({letter}|{digit})*
word [^ \t\n]+
```

Regular Expressions in Flex

```
match the char x
X
            match the char.
"string" match contents of string of chars
            match any char except \n
            match beginning of a line
$
            match the end of a line
            match one char x, y, or z
[xyz]
            match any char except x, y, and z
[^xyz]
            match one of a to z
[a-z]
```

Regular Expressions in Flex (cont)

```
closure (match 0 or more r's)
r*
             positive closure (match 1 or more r's)
r+
             optional (match 0 or 1 r)
r?
             match r1 then r2 (concatenation)
r1 r2
             match r1 or r2 (union)
r1 | r2
(r)
             grouping
r1 \ r2
             match r1 when followed by r2
             match the RE defined by name
  name }
```

Some number REs

[0-9] A single digit.

[0-9]+ An integer.

 $[0-9]+ (\. [0-9]+)$? An integer or fp number.

[+-]? $[0-9]+ (\.[0-9]+)$? ([eE][+-]?[0-9]+)? Integer, fp, or scientific notation.

Section 2: RE/Action Rule

A rule has the form:

```
name { action }
re { action }
```

- the name must be defined in section 1
- the action is any C code

If the named RE matches* an input character sequence, then the C code is executed.

Rule Matching

• Longest match rule.

```
"int" { return INT; }
"integer" { return INTEGER; }
```

 If rules can match same length input, first rule takes priority.

```
"int" { return INT; }
[a-z]+ { return ID; }
[0-9]+ { return NUM; }
```

Section 3: C Functions

Added to end of the lexical analyzer

21

Removing Whitespace

```
[ \t\n]
         whitespace
         %%
                                              empty action
name
          {whitespace}
                             ECHO; }
 RE
         %%
                                            ECHO macro
         int main(void)
            yylex();
            return 0;
```

22

Printing Line Numbers

```
%{
                                     the matched text
  int lineno = 1;
%}
%%
^(.*)\n { printf("%4d\t%s", lineno, yytext);
           lineno++;}
%%
int main(int argc, char *argv[])
 // proper arg processing & error handling, ...
 yyin = fopen(argv[1], "r");
 yylex();
 return 0;
```

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

Under The Covers

How to go from REs to a working scanner?

Convert to fast scanner

25

Regular Languages

- Finite Alphabet, Σ , of symbols.
- word (or string), a finite sequence of symbols from Σ .
- Language over Σ is a set of words from Σ .
- Regular Expressions describe Regular Languages.
 - easy to write down, but hard to use directly
- The languages accepted by Finite Automata are also Regular.

Regular Expressions defined

Base Cases:

```
    A single character a
```

– The empty string
$$\epsilon$$

Recursive Rules:

If R₁ and R₂ are regular expressions

```
-Concatenation R_1R_2
```

-Union
$$R_1 R_2$$

$$-$$
Closure R_1^*

$$-Grouping$$
 (R₁)

REs describe Regular Languages.

RE Examples

• even a's

odd b's

- even a's or odd b's
- even a's followed by odd b's

RE Examples

• even a's

odd b's

- even a's or odd b's
- even a's followed by odd b's

RE Examples

• even a's

$$R^{A} = b^{*} (ab^{*}ab^{*})^{*}$$

odd b's

$$R^{B} = a^{*} b a^{*} (b a^{*} b a^{*})^{*}$$

even a's or odd b's

even a's followed by odd b's

$$R^A R^B$$

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

Finite Automata

- finite set of states
- ullet set of edges from states to states labeled by letter from Σ
- initial state
- set of accepting states
- How it works:
 - Start in initial state, on each character transition goto state using edge labeled for that character.
 - If at end of word we are in accepting state, the word is in language
 - Language accepted are strings that cause FA to end in an accepting state

15-411/611 © 2019-21 Goldstein

Example REs \rightarrow FA

• even a's

b* (ab* ab*)*

odd b's

a* b a* (b a* b a*)*

Example REs \rightarrow FA

even a's

b* (ab* ab*)*

odd b's

a* b a* (b a* b a*)*

Deterministic Finite Automata
DFA

Ad Hoc

15-411/611 © 2019-21 Goldstein

Example REs \rightarrow FA

• even a's

b* (ab* ab*)*

odd b's

a* b a* (b a* b a*)*

even a's or odd b's
 R^A | R^B

even a's followed by odd b's
 R^A R^B

Converting RE to NFA: Base Case

• for $a \in \Sigma$ the NFA $M_a = \{\Sigma, \{s_0, s_f\}, \delta, s_0, \{s_f\}\}$

• for ϵ the NFA $M_{\epsilon} = \{\Sigma, \{s_0, s_f\}, \delta, s_0, \{s_f\}\}$

36

Recursive Case

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$ and RE S with $M_s = \{\Sigma, s_S, \delta_S, s_0, F_s\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$ and RE S with $M_s = \{\Sigma, s_S, \delta_S, s_0, F_s\}$

• $M_{R|S} = \{\Sigma, s_R \cup s_s \cup \{m_0, m_f\}, \delta_{R|S}, m_0, m_f\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$ and RE S with $M_s = \{\Sigma, s_S, \delta_S, s_0, F_s\}$

• $M_{R|S} = \{\Sigma, s_R \cup s_S \cup \{m_0, m_f\}, \delta_{R|S}, m_0, m_f\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$ and RE S with $M_s = \{\Sigma, s_S, \delta_S, s_0, F_s\}$

• $M_{RS} = \{\Sigma, s_R \cup s_S \cup \{m_0, m_f\}, \delta_{RS}, m_0, m_f\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$ and RE S with $M_s = \{\Sigma, s_S, \delta_S, s_0, F_s\}$

• $M_{RS} = \{\Sigma, s_R \cup s_S \cup \{m_0, m_f\}, \delta_{RS}, m_0, m_f\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$

• $M_{R^*} = \{\Sigma, s_R \cup \{m_0, m_f\}, \delta_{R^*}, m_0, m_f\}$

• for RE R with $M_R = \{\Sigma, s_R, \delta_R, r_0, F_r\}$

• $M_{R*} = \{\Sigma, s_R \cup \{m_0, m_f\}, \delta_{R*}, m_0, m_f\}$

Example REs \rightarrow FA

even a's

b* (ab* ab*)*

odd b's

a* b a* (b a* b a*)*

even a's or odd b's
 R^A | R^B

even a's followed by odd b's
 R^A R^B

Let's try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

Let's try a (b | c)*

1. a, b, & c

2. b | c

3. (b | c)*

We could do a bit better. ©

We could do a bit better. ©

50

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- $RE \rightarrow NFA$
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

$RE \rightarrow NFA \rightarrow DFA$

- Can't directly execute Non-deterministic FA
- Need to convert NFA to DFA
- Essentially, we will build a DFA that simulates the NFA

 Key idea: Keep track of all possible NFA states we could be in at each step: the set of all possible NFA states becomes the DFA state

- start in state { s₀ }.
- For each edge create a set of all states that can be reached. Continue until done.
- All sets that contain an NFA accepting state are accepting.

Lets first deal with ε edges

- ε-closure: all states that can be reached only along ε-edges:
- Computing ϵ -closure(s) for $s \in S$:
 - initialize all ε-closure(s) = { s }
 - while some ε-closure(s) changedforeach s∈S:

```
foreach q \in \epsilon-closure(s):
 \epsilon-closure(s) = \epsilon-closure(s) \cup \delta(q, \epsilon)
```

• Terminates?

• NFA: $\{\Sigma, Q, \delta, q_0, F\} \rightarrow DFA: \{\Sigma, S, \Delta, s_0, F'\}$

```
s_0 \leftarrow \varepsilon-closure(q_0)
while \exists unmarked s \in S:
     mark s
     foreach a \in \Sigma
          t \leftarrow \epsilon-closure(Move(s, a))
          if t \notin S:
             add t to S
              \Delta (s,a) \leftarrow t
```

• NFA: $\{\Sigma, Q, \delta, q_0, F\} \rightarrow DFA: \{\Sigma, S, \Delta, s_0, F'\}$

```
s_0 \leftarrow \varepsilon-closure(q_0)
while \exists unmarked s \in S:
     mark s
     foreach a \in \Sigma
          t \leftarrow \epsilon-closure(Move(s, a))
          if t \notin S:
             add t to S
              \Delta (s,a) \leftarrow t
```

Move(s, a)
the set of states
reachable from s by a

• NFA: $\{\Sigma, Q, \delta, q_0, F\} \rightarrow DFA: \{\Sigma, S, \Delta, s_0, F'\}$

```
s_0 \leftarrow \varepsilon-closure(q_0)
while \exists unmarked s \in S:
                                                 Why does this terminate?
     mark s
     foreach a \in \Sigma
          t \leftarrow \epsilon-closure(Move(s, a))
         if t \notin S:
             add t to S
              \Delta (s,a) \leftarrow t
```

- NFA: $\{\Sigma, Q, \delta, q_0, F\} \rightarrow DFA: \{\Sigma, S, \Delta, s_0, F'\}$
- Example of a fixed point computation
 - S is finite, at most ?
 - Always add to S, i.e., while loop is monotone
 - no duplicates in S
 - stop when S stops changing
- Other fixed point computations:
 - Constructing LR(1) items
 - Many Dataflow analysis (e.g., liveness)

DFA States	NFA States	а	b	С
s_0	0			

15-411/611 © 2019-21 Goldstein

59

DFA States	NFA States	а	b	С
s ₀	0	1, 2, 3, 4, 6, 9	-	-
S ₁				

60

DFA States	NFA States	а	b	С
s ₀	0	1, 2, 3, 4, 6, 9	-	-
S ₁	1, 2, 3, 4, 6, 9	-		
		© 2019-21 Goldstein		

DFA States	NFA States	а	b	С
s ₀	0	1, 2, 3, 4, 6, 9	-	-
S ₁	1, 2, 3, 4, 6, 9	-	5	
		© 2019-21 Goldstein		

DFA States	NFA States	а	b	С
s ₀	0	1, 2, 3, 4, 6, 9	-	-
S ₁	1, 2, 3, 4, 6, 9	-	5, 3, 4, 6, 8, 9	
		© 2019-21 Goldstein		

© 2019-21 Goldstein

a(b|c)*:

72

DFA States	NFA States	a	b	С
S ₀	0	1, 2, 3, 4, 6, 9	-	-
S ₁	1, 2, 3, 4, 6, 9	-	5, 3, 4, 6, 8, 9	7, 3, 4, 6, 8, 9
S ₂	5, 3, 4, 6, 8, 9	-	S ₂	s ₃
S ₃	7, 3, 4, 6, 8, 9	-	S ₂	s ₃

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

DFA Minimization

- Partition states into equivalent sets
- Two states are equivalent iff:
 - paths entering them are the same
 - \forall a ∈Σ, transitions lead to equivalent states
- transition on a to different sets \Rightarrow different states.

DFA Minimization

• Plan:

- start with maximal sets: { Q } and { Q F }
- partition sets for each a $\in \Sigma$ until no change
- paritions become new states of minimized DFA
- Partitioning a set on " α "
 - -Assume q_a , & $q_b \in s$, and $\delta(q_a, \alpha) = q_x \& \delta(q_b, \alpha) = q_y$
 - If q_x & q_y are not in the same set, then s must be split (q_a has transition on α , q_b does not $\Rightarrow \alpha$ splits s)
- ullet One state in the final DFA cannot have two transitions on lpha

DFA Minimization

```
P \leftarrow \{ F, \{Q-F\} \}
while (P is still changing)
   T \leftarrow \{ \}
   for each set S \in P
       for each \alpha \in \Sigma
          partition S by \alpha into S_1, S_2, ..., S_k
         T \leftarrow T \cup S_1 \cup S_2 \cup ... \cup S_k
   if T \neq P then
       P \leftarrow T
```

DFA Minimization

```
\begin{split} \text{P} &\leftarrow \{\,\text{F}, \{\text{Q-F}\}\} \\ \text{while (P is still changing)} \\ &\quad T \leftarrow \{\,\} \\ &\quad \text{for each set S} \in \text{P} \\ &\quad \text{for each } \alpha \in \Sigma \\ &\quad \text{partition S by } \alpha \text{ into S}_1, \, \text{S}_2, \, ..., \, \text{S}_k \\ &\quad T \leftarrow T \cup \text{S}_1 \cup \text{S}_2 \cup ... \cup \text{S}_k \\ &\quad \text{if T} \neq \text{P then} \\ &\quad \text{P} \leftarrow \text{T} \end{split}
```

Another Fixed Point Alg Terminates:

- maximum of 2^{|Q|} sets
- Always adding to P
- Never combining sets in P

Initial partition ensures that final states remain final.

Hopcroft's worklist algorithm is efficient.

Today – part 1

- Lexing
- Flex & other scanner generators
- Regular Expressions
- Finite Automata
- RE \rightarrow NFA
- NFA \rightarrow DFA
- DFA → Minimized DFA
- Limits of Regular Languages

Regular Languages

- Regular Expressions are great
 - concise notation
 - automatic scanner generation
 - lots of useful languages
- But, ...
 - Not all languages are regular
 - Context Free Languages
 - Context Sensitive Languages
 - Even simple things like balanced parenthesis,
 e.g., L = { A^kB^k } (or nested comments!)
 - RL can't count

Not all Scanning is easy

- Language design should start with lexemes
 - My favorite example from PL/I
 if then then then = else; else else = then
- blanks not important in Fortran
- nested comments in C
- limited identifier lengths in Fortran

Today – part 2

Parsing

- Languages and Grammars
- Context Free Grammars
- Derivations & Parse Trees
- Ambiguity
- Top-down parsers
- FIRST, FOLLOW, and NULLABLE
- Bottom-up parsers

Languages

- Compiler translates from sequence of characters to an executable.
- A series of language transformations
- lexing: characters → tokens
- parsing: tokens → "sentences"

Languages

- Compiler translates from sequence of characters to an executable.
- A series of language transformations
- lexing: characters → tokens
- parsing: tokens → parse trees

Grammars and Languages

- A grammar, G, recognizes a language, L(G)
 - $-\Sigma$ set of terminal symbols
 - A set of non-terminals
 - S the start symbol, a non-terminal
 - P a set of productions
- Usually,
 - $-\alpha$, β , γ , ... strings of terminals and/or non-terminals
 - A, B, C, ... are non-terminals
 - a, b, c, ... are terminals
- General form of a production is: $\alpha \rightarrow \beta$

Derivation

 A sequence of applying productions starting with S and ending with w

$$S \rightarrow \gamma_1 \rightarrow \gamma_2 \dots \rightarrow \gamma_{n-1} \rightarrow W$$

 $S \rightarrow^* W$

L(G) are all the w that can be derived from S

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

 $S \rightarrow bA$
 $A \rightarrow \epsilon$
 $A \rightarrow cA$

$$S \rightarrow aS$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

 $S \rightarrow bA$
 $A \rightarrow \epsilon$
 $A \rightarrow cA$

$$S \rightarrow aS \rightarrow aaS$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

 $S \rightarrow bA$
 $A \rightarrow \epsilon$
 $A \rightarrow cA$

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA \rightarrow aabcA$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

$$S \rightarrow aS \rightarrow aaS \rightarrow aabA \rightarrow aabcA \rightarrow aabc$$

- Regular expressions and NFAs can be described by a regular grammar
- E.G., a*bc*

$$S \rightarrow aS$$

$$S \rightarrow bA$$

$$A \rightarrow \epsilon$$

$$A \rightarrow cA$$

- Above is a right-regular grammar
- All rules are of form:

$$A \rightarrow a$$

$$A \rightarrow aB$$

$$A \rightarrow \epsilon$$

 Regular expressions and NFAs can be described by a regular grammar

• right regular grammar: $A \rightarrow a$

 $A \rightarrow aB$

 $A \rightarrow \epsilon$

• left regular grammar: $A \rightarrow a$

 $A \rightarrow Ba$

 $A \rightarrow \epsilon$

 Regular grammars are either right-regular or left-regular.

Expressiveness

- Restrictions on production rules limit expressiveness of grammars.
- No restrictions allow a grammar to recognize all recursively enumerable languages
- A bit too expressive for our uses ©
- Regular grammars cannot recognize aⁿbⁿ
- We need something more expressive

Chomsky Hierarchy

Class	Language	Automaton	Form	"word" problem	Example
0	Recursively Enumerable	Turing Machine	any	undecidable	Post's Corresp. problem
1	Context Sensitive	Linear- Bounded TM	αΑβ→αγβ	PSPACE- complete	a ⁿ b ⁿ c ⁿ
2	Context Free	Pushdown Automata	A→α	cubic	a ⁿ b ⁿ
3	Regular	NFA	A→a A→aB	linear	a*b*

Today – part 2

- Languages and Grammars
- Context Free Grammars
- Derivations & Parse Trees
- Ambiguity
- Top-down parsers
- FIRST, FOLLOW, and NULLABLE
- Bottom-up parsers

Context-Free Grammar

- A context-free grammar, G, is described by:
 - Σ , a set of terminals (which are just the set of possible tokens from the lexer) e.g., if, then, while, id, int, string, ...
 - A, a set of non-terminals.
 Non-terminals are syntactic variables which define sets of strings in the language e.g., stmt, expr, term, factor, vardecl, ...
 - **–** S
 - P

Context-Free Grammar

- A context-free grammar, G, is described by:
 - $-\Sigma$, a set of terminals ...
 - A, a set of non-terminals.
 - S, S ∈ A, the start symbol
 The set of strings derived from S are the valid string in the language.
 - P, set of productions that specify how terminals and non-terminals combine to form strings in the language a production, p, has the form: $A \rightarrow \alpha$

Context-Free Grammar

- A context-free grammar, G, is described by:
 - $-\Sigma$, a set of terminals ...
 - A, a set of non-terminals.
 - $-S, S \in A$, the start symbol
 - P, set of productions ... a production, p, has the form: : $A \rightarrow \alpha$
- E.g.,: S := E

 S := print E

 E := E + T

 T := F terminals

What makes a grammar CF?

- Only one NT on left-hand side → context-free
- What makes a grammar context-sensitive?
- $\alpha A\beta \rightarrow \alpha \gamma \beta$ where
 - $-\alpha$ or β may be empty,
 - but γ is not-empty
- Are context-sensitive grammars useful for compiler writers?

Simple Grammar of Expressions

```
S := Exp
```

$$Exp := Exp + Exp$$

$$Exp := Exp - Exp$$

$$Exp := Exp * Exp$$

$$Exp := Exp / Exp$$

$$Exp := id$$

Describes a language of expressions. e.g.: 2+3*x

Derivations

 A sequence of steps in which a non-terminal is replaced by its right-hand side.

```
1 5 -- Fyn
       There are possibly many derivations
           determined by the NT chosen to
                                                    Kp
                         expand.
4 Exp:= Exp * Exp
                                   by 2 \Rightarrow \text{Exp} + \text{Exp} * \text{id}_{x}
5 Exp:= Exp / Exp
                                   by 7 \Rightarrow int_2 + Exp * id_x
6 Exp:= id
                                   by 7 \Rightarrow int_2 + int_3 * id_x
7 Exp:=int
```

Leftmost Derivations

Leftmost derivation: leftmost NT always chosen

```
1 S := Exp
2 Exp:= Exp + Exp
3 Exp:= Exp - Exp
4 Exp:= Exp * Exp
5 Exp:= Exp / Exp
6 Exp:=id
7 Exp:=int
```

by
$$1 \Rightarrow \text{Exp}$$

by $4 \Rightarrow \text{Exp} * \text{Exp}$
by $2 \Rightarrow \text{Exp} + \text{Exp} * \text{Exp}$
by $7 \Rightarrow \text{int}_2 + \text{Exp} * \text{Exp}$
by $7 \Rightarrow \text{int}_2 + \text{int}_3 * \text{Exp}$
by $6 \Rightarrow \text{int}_2 + \text{int}_3 * \text{id}_x$

Rightmost Derivations

Rightmost derivation: rightmost NT always chosen

```
1 S := Exp
                                          by 1 \Rightarrow \mathsf{Exp}
2 Exp:= Exp + Exp
                                          by 4 \Rightarrow Exp * Exp
3 Exp:= Exp - Exp
                                          by 6 \Rightarrow \text{Exp * id}_{x}
4 Exp:= Exp * Exp
                                          by 2 \Rightarrow \text{Exp} + \text{Exp} * \text{id}_{x}
5 Exp:= Exp / Exp
                                          by 7 \Rightarrow \text{Exp} + \text{int}_3 * \text{id}_x
6 Exp:=id
                                          by 7 \Rightarrow int_2 + int_3 * id_x
7 Exp:= int
```

Parse Trees

symbols in rhs are children of NT being

rewritten by $1 \Rightarrow \mathsf{Exp}$ by $4 \Rightarrow Exp * Exp$ by $2 \Rightarrow Exp + Exp * Exp$ by $7 \Rightarrow int_2 + Exp * Exp$ by $7 \Rightarrow int_2 + int_3 * Exp$ by $6 \Rightarrow int_2 + int_3 * id_x$

Parse Trees

parse tree for rightmost derivation

What about different parse trees for same sentence?

Ambiguous Grammars

• A gra What does ambiguity point out? a sentence with >1 parse trees. or,

If grammer has >1 leftmost (rightmost)

derivations it is ambiguous

Converting Expression Grammar

- Adding precedence with more nonterminals
- One for each level of precedence:
 - -(+, -) exp
 - (*, /) term
 - (id, int) factor
 - Make sure parse derives sentences that respect the precedence
 - Make sure that extra levels of precedence can be bypassed, i.e., "x" is still legal

A Better Exp Grammar

```
1 S := Exp
```

$$2 Exp := Exp + Term$$

$$3 Exp := Exp - Term$$

S

by
$$1 \Rightarrow Exp$$

by
$$2 \Rightarrow Exp + Term$$

by
$$4 \Rightarrow \text{Term} + \text{Term}$$

by
$$7 \Rightarrow Factor + Term$$

by
$$9 \Rightarrow int_2 + Term$$

by
$$5 \Rightarrow int_2 + Term * Factor$$

by
$$7 \Rightarrow int_2 + Factor * Factor$$

by
$$9 \Rightarrow int_2 + int_3 * Factor$$

by
$$8 \Rightarrow int_2 + int_3 * id_x$$

What is the parse tree?

Another Ambiguous Grammer

What is the parse tree for:if E then if E then S else S?

- What is the language designers intention?
- Is there a context-free solution?

Dangling Else Grammar

- Is this clearer?
- What is parse tree for: if E then if E then Selse S?

Parser generators provide a better way

Parsing a CFG

Top-Down

- start at root of parse-tree
- pick a production and expand to match input
- may require backtracking
- if no backtracking required, predictive

Bottom-up

- start at leaves of tree
- recognize valid prefixes of productions
- consume input and change state to match
- use stack to track state

Top-down Parsers

- Starts at root of parse tree and recursively expands children that match the input
- In general case, may require backtracking
- Such a parser uses recursive descent.
- When a grammar does not require backtracking a predictive parser can be built.

A Predictive Parser

```
S := BSF
                 Idea is for parser to do something
                  besides recognize legal sentences.
                 if match('b') -> B(); S(); F(); action();
                 else return:
                mustMatch('b'); action(); return;}
                mustMatch('f'); action(); return;}
```

Top-Down parsing

- Start with root of tree, i.e., S
- Repeat until entire input matched:
 - pick a non-terminal, A, and pick a production $A \rightarrow \gamma$ that can match input, and expand tree
 - if no such rule applies, backtrack
- Key is obviously selecting the right production

S

by
$$1 \Rightarrow E$$

 $lint_2 - int_3 * id_x$

1	S := E
2	E := E + T
3	E := E - T
4	E := T
5	T := T * F
6	T := T / F
7	T := F
8	F := id

5	$int_2 - int_3 * id_x$
by $1 \Rightarrow E$	$int_2 - int_3 * id_x$
by 2 ⇒ E + T	int ₂ - int ₃ * id _x
by $4 \Rightarrow T + T$	$int_2 - int_3 * id_x$
by $7 \Rightarrow F + T$	$int_2 - int_3 * id_x$
by 9 \Rightarrow int ₂ + T	int_2 - int_3 * id_x

Must backtrack here!

1	S := E
2	E := E + T
3	E := E - T
4	E := T
5	T := T * F
6	T := T / F
7	T := F
8	F := id
9	F := int

S	$lint_2 - int_3 * id_x$
by $1 \Rightarrow E$	$int_2 - int_3 * id_x$
by $2 \Rightarrow E + T$	$int_2 - int_3 * id_x$
by $4 \Rightarrow T + T$	$int_2 - int_3 * id_x$
by $7 \Rightarrow F + T$	<pre>int₂ - int₃ * id_x</pre>
by 9 \Rightarrow int ₂ + T	int ₂ -int ₃ * id _x
by 3 \Rightarrow E - T	int ₂ - int ₃ * id _x
by 4 \Rightarrow T - T	$lint_2 - int_3 * id_x$
by $7 \Rightarrow F - T$	<pre>int₂ - int₃ * id_x</pre>
by 9 \Rightarrow int ₂ - T	int ₂ -int ₃ * id _x
by $5 \Rightarrow int_2 - T * F$	int ₂ - int ₃ * id _x

1	5 := E
2	E := E + T
3	E := E - T
4	E := T
5	T := T * F
6	T := T / F
7	T := F
8	F := id
9	F := int

5	<pre>int₂ - int₃ * id_x</pre>
by $1 \Rightarrow E$	$int_2 - int_3 * id_x$
by $2 \Rightarrow E + T$	int ₂ - int ₃ * id _x
by 4 \Rightarrow T + T	$lint_2 - int_3 * id_x$
by $7 \Rightarrow F + T$	$int_2 - int_3 * id_x$
by 9 \Rightarrow int ₂ + T	int ₂ -int ₃ * id _x
by 3 \Rightarrow E - T	int ₂ - int ₃ * id _x
by 4 \Rightarrow T - T	$int_2 - int_3 * id_x$
by $7 \Rightarrow F - T$	$int_2 - int_3 * id_x$
by 9 \Rightarrow int ₂ - T	int_2 - int_3 * id_x

What kind of derivation is this parsing? nt2 - int3 * idx

by
$$1 \Rightarrow E$$

by $2 \Rightarrow E + T$
by $2 \Rightarrow E + E + T$
by $2 \Rightarrow E + E + E + T$

Will not terminate! Why?

grammar is left-recursive

What should we do about it?

Eliminate left-recursion

Does this work?

It is right recursive, but also right associative!

Eliminating Left-Recursion

Given 2 productions:

A:= A
$$\alpha$$
 | β
Where neither α nor β start with A (e.g., For example, E:= E+T | T)

• Make it right-recursive:

$$A := \beta R$$

$$R := \alpha R$$

$$R \text{ is right recursive}$$

Extends to general case.

Rewriting Exp Grammar

```
1 S := E
```

$$2 E := E + T$$

3 E := E - T

4 E := T

5 T := T * F

6 T := T/F

7 T := F

8 F := id

9 F := int

1 S := E

2' E' := + T E'

3' E' := - T E'

4' E' :=

5' T':= * F T'

6' T':=/FT'

7' T':=

8 F := id

9 F := int

Is this legible?

2 E := T E'

5 T := F T'

Try again

$$2 E := TE'$$

by
$$1 \Rightarrow E$$

by
$$2 \Rightarrow TE'$$

by
$$5 \Rightarrow F T' E'$$

by
$$9 \Rightarrow 2 \text{ T' E'}$$

by
$$7' \Rightarrow 2 E'$$

by
$$3' \Rightarrow 2 - TE'$$

by
$$5 \Rightarrow 2 - F T' E'$$

by
$$9 \Rightarrow 2 - 3 T' E'$$

by
$$5' \Rightarrow 2 - 3 * F T' E'$$

$$int_2 - \bullet int_3 * id_x$$

$$int_2 - int_3 - id_x$$

Unlike previous time we tried this, it appears that only one production applies at a time. I.e., no backtracking needed. Why?

Lookahead

- How to pick right production?
- Lookahead in input stream for guidance
- General case: arbitrary lookahead required
- Luckily, many context-free grammars can be parsed with limited lookahead
- If we have $A \rightarrow \alpha \mid \beta$, then we want to correctly choose either $A \rightarrow \alpha$ or $A \rightarrow \beta$
- define FIRST(α) as the set of tokens that can be first symbol of α , i.e.,
 - $a \in FIRST(\alpha)$ iff $\alpha \rightarrow^* a\gamma$ for some γ

Lookahead

- How to pick right production?
- If we have A $\rightarrow \alpha \mid \beta$, then we want to correctly choose either A $\rightarrow \alpha$ or A $\rightarrow \beta$
- define FIRST(α) as the set of tokens that can be first symbol of α , i.e., $a \in FIRST(\alpha)$ iff $\alpha \to^* a\gamma$ for some γ
- If $A \rightarrow \alpha \mid \beta$ we want: FIRST(α) \cap FIRST(β) = \emptyset
- If that is always true, we can build a predictive parser.

Computing FIRST(α)

- Given X := A B C, FIRST(X) = FIRST(A B C)
- Can we ignore B or C?
- Consider:

Computing FIRST(α)

- Given X := A B C, FIRST(X) = FIRST(A B C)
- Can we ignore B or C?
- Consider:

```
A := a
|
B := b
| A
C := c
```

- FIRST(X) must also include FIRST(C)
- IOW:
 - Must keep track of NTs that are nullable
 - For nullable NTs, determine FOLLOWS(NT)

nullable(A)

- nullable(A) is
 - true if A can derive the empty string
 - false otherwise
- For example:

In this case, nullable(X) = nullable(Y) = true nullable(B) = false

FOLLOW(A)

- FOLLOW(A) is the set of terminals that can immediately follow A in a sentential form.
- I.e., $a \in FOLLOW(A)$ iff $S \Rightarrow^* \alpha Aa\beta$ for some α and β

Building a Predictive Parser

- We want to know for each non-terminal which production to choose based on the next input character.
- Build a table with rows labeled by non-terminals, A, and columns labeled by terminals, a. We will put the production, $A := \alpha$, in (A, a) iff
 - FIRST(α) contains a or
 - nullable(α) and FOLLOW(A) contains a

The table for the robot

$$S := B S F$$

B := b

F := f

	FIRST	FOLLOW	nullable
S	b	\$	yes
В	b	b,f	no
F	f	f,\$	no

137

	b	f	\$
5			
В			
F			

The table for the robot

	b		f	\$	
5	S:=B	SF		S:=	
В	B:=b				
F			F:=f		

FOLLOW(S) = \$

Table 1

			_
4			
	_	• —	_
		. —	
_	_	•	_

	FIRST	FOLLOW	nullable
S	id, int	\$	
E	id, int	\$	
E'	+, -	\$	yes
Τ	id, int	+,-,\$	
Ť	/,*	+,-,\$	yes
Œ	id, int	/, *,\$	

	+	-	*	/	id	int	\$
5							
E							
E'							
Т							
T'							
F							

Table 1

4	_		
7		• —	\vdash
T	<u> </u>	. —	

	FIRST	FOLLOW	nullable
S	id, int	\$	
E	id, int	\$	
E	+, -	\$	yes
Т	id, int	+,-,\$	
Ť	/,*	+,-,\$	yes
Œ	id, int	/,*,\$	

	+	-	*	/	id	int	\$
5					:=E	:=E	
Е					:=TE'	:=TE'	
E'	:=+TE'	:=-TE'					:=
Т					:=FT'	:=FT'	
T	:=	:=	:=*FT'	:=/FT'			:=
F					:=id	:=int	

140

Using the Table

- Each row in the table becomes a function
- For each input token with an entry:
 Create a series of invocations that implement the production, where
 - a non-terminal is eaten
 - a terminal becomes a recursive call
- For the blank cells implement errors

Example function

```
$
                    id
                        int
                    :=E
                        :=E
                    |:=+TE' |:=-TE'
               How to handle errors?
                   |=id |=int
   Eprime() {
      switch (token) {
      case PLUS: eat(PLUS); T(); Eprime(); break;
                   eat(MINUS); T(); Eprime(); break;
      case MINUS:
                   T(); Eprime();
      case ID:
                   T(); Eprime();
      case INT:
      default: error();
   }
```

Left-Factoring

- Predictive parsers need to make a choice based on the next terminal.
- Consider:

```
S:=if E then S else S
| if E then S
```

- When looking at if, can't decide
- so left-factor the grammar

```
S := if E then S X
X := else S
|
```

Top-Down Parsing

- Can be constructed by hand
- LL(k) grammars can be parsed
 - Left-to-right
 - Leftmost-derivation
 - with k symbols lookahead
- Often requires
 - left-factoring
 - Elimination of left-recursion