Partial Redundancy Elimination

15-411/15-611 Compiler Design
Seth Copen Goldstein

November 2, 2021
(remember to Vote!)

Today

e Lab5/Lab6 options
e Guest lectures
e PRE

15-411/611

11/11
11/16
11/18
11/20
11/23

11/27
12/7
12/14

L.ab5 and Lab6

e Two options.

e Option 1: Lab5 (reduced) + Lab6
e Option 2: Lab5 + extra

assignments out
L5 checkpoint

L6 draft proposal
feedback returned

L6 final proposal

L5 compiler & Report

L6 compiler & report

assignment out

L5 checkpoint

L5 extra opt draft proposal
feedback returned

L5 extra final proposal + sample CO
program(s)

L5 compiler due

L5 report due

Scoring

e Option 1: L5-- 125 points, L6 175 points
— Will adjust opt scaling down
— Will scale down report requirements on L5

e Option 2: L5++ 300 points

— require at least one loop opt, one whole
program opt

— At least one opt not covered in class
— SSA (not required to do regalloc on SSA)

— Require sample programs in addition to our
benchmarks for your proposed opts

Guest Lectures

e Attendance mandatory

e Will be remote (on lecture zoom link)
e Tue 11/9, Bodo.ai

e Thr 11/11, Jane Street

e Tue 11/30, Google @ 4:30pm

Common Subexpression Elimination

e Find computations that are always
nerformed at least twice on an execution
nath and eliminate all but the first

e Usually limited to algebraic expressions

— put in some canonical form

e Almost always improves performance

— except when?

CSE Limitation

eSearches for “totally” redundant
expressions

— An expression is totally redundant if it is
recomputed along all paths leading to the
redundant expression

— An expression is partially redundant if it is
recomputed along some but not all paths

/\ /\

=Xty =Xty

=Xty

=Xty =Xty

Loop-Invariant Code Motion

e Moves computations that produce the same
value on every iteration of a loop outside of
the loop

e \When is a statement loop invariant?

— when all its operands are loop invariant...

Loop Invariance

e An operand is loop-invariant if
1.it is a constant,

2.all definitions (use ud-chain) are located outside
the loop, or

3.has a single definitions (ud-chain again) which is
inside the loop and that definition is itself loop
Invariant

eCan use iterative algorithm to compute loop
Invariant statements

Loop Invariant Code Motion

e Naive approach: move all loop-invariant
statements to the preheader

e Not always valid for statements which
define variables

e |f statement s defines v, can only move s if
—s dominates all uses of v in the loop
—s dominates all loop exits

Loop Invariant Code Motion

e Loop invariant expressions are a form of
partially redundant expressions. Why?

. X<y*z
X<y~ 2 a<b*c

Partial Redundancy Elimination

e Moves computations that are at least
partially redundant to their optimal
computation points and eliminates totally
redundant ones

eEncompasses CSE and loop-invariant code
motion

/\

a :=xty

%/

a:=xty

Optimal Computation Point

eOptimal?
— Result used and never recalculated
— Expression placed late as possible

a :=xty

v/

a:=xty

PRE Example

entry What expression is

partially redundant?

1 What are the optimal
computation points?

a

B4 B5 B6
b=x%*y |
B7
=x*y

15-411/611

PRE Example

entry What expression is

partially redundant?

1 What are the optimal
computation points?

a

B4 B5 B6
b=x*%*y |
B7
=x*y

15-411/611

B3
tl= x * y
z < 7

PRE Example

What expression is
partially redundant?

What are the optimal
computation points?

Not quite perfect

B6

15-411/611

PRE Example

entry What expression is
B1 partially redundant?
z =a +1 What are the optimal
x >3 computation points?
— B3
B2 z < 7
tl=x * Y — —\
a =tl B3a
y <5 tl= x * y
/\/
B4 B5 B6
b = tl I
B7
c = tl

15-411/611

Critical Edge Splitting

e|n order for PRE to work well, we must split critical
edges

oA is an edge that connects a block with
multiple successors to a block with multiple
predecessors

B2 B3
a=x*%y z < 7

y <5

— \
B4 B5 B6

b=x%*y

Critical Edge Splitting

e|n order for PRE to work well, we must split critical
edges

oA is an edge that connects a block with
multiple successors to a block with multiple
predecessors

B2 B3
a=x%*y z < 7
y <5
/\BZa B3/a\
\/
B4 B5 B6

b=x%*y

PRE History

*PRE was first formulated as a
data flow analysis by Morel and Renvoise in

1979
eKnoop, Ruthing, and Steffen came up with a

way to do it using several unidirectional
analysis in 1992 (called their approach

)

— this is a much simpler method
— but it is still very complicated

e Kennedy etal reengineer the algorithm to
work in SSA in 1999. See toplas

The 60K Plan

e Find Earliest and useful
Determine for each expression the earliest
place(s) it can be computed while still
guaranteeing that it will be used

e Find latest but needed
Postpone the expression as long as possible
without introducing redundancy

e Trading size for speed
An expression may be computed in many
places, but never if already computed

General Approach to analysis

e Computationally Optimal Placement

* Anticipatable

computing exp is useful along any path to exit
* Earliest

p is the earliest point to compute exp

* Expression can be placed at Ant M Earliest
* |[ncreases register Pressure

e Lazy Code Motion

General Approach to analysis

e Computationally Optimal Placement

e Lazy Code Motion

* Latest
Cannot move expression past p on any path

* |solated
all uses of expression follow immediately after p

* expression should be placed at Latest m ~Isolated

Anticipatable Expressions

e Expression x+y is anticipated at a point p if
x+y is guaranteed to be computed along
any path from p->exit before any

recomputation of x ory
e What kind of data flow is this?

— backwards
— Intersection

Anticipated for ‘x*y’?

entry
Bl
= a +1
x > 3
i/- ——
B2 B3
a=x%*y z < 7
y <5

6

Anticipated for ‘x*y’?

entry
Bl
z = a +1
x > 3
i/- ———p
O B2 B3
a=x%*y z < 7
y <5
/RZa ©B3a
____t:EE;»lﬁ:::_
© B4 o B5 B6
b=x%*y v

© B7
c=x *y
exit

Local Transparency (TRANSIloc)

e An expression’s value is

in a block if there are
no assignments in the block to
variables within the expression

— ie, expression not killed

Bl
z = a +1
x > 3

/\
B2 B3
a=x%*y z <7
y <5
B3a
/\Bh\//\
B4 B5 B6

b=x*y i
B7
c =X * y
15-411/611

Block | TRANSIoc

entry | {a+1,x*y}
Bl {a+1,x*y}
B2 {xX*y}
B2a |{a+1,x*y}
B3 {a+1,x*y}
B3a |{a+1,x*y}
B4 {a+1,x*y}
B5 {a+1,x*y}
B6 {a+1,x*y}
B7 {a+1,x*y}
exit |{a+1,x*y}

30

Local Anticipatable (ANTloc)

e An expression’s value is
in a block if

— there is a computation of the expression

in the block

— the computation can be safely moved to

the beginning of the block

z

B1
= a +1
x > 3

— T,

B2
a=x*y
y <5

B3
z < 7

B3a

/\Bz""\//\

15-411/611

B5

!

B6

B7

c=x*y

Block ANTloc

entry {}
Bl {a+1}
B2 {xX*y}
B2a {}
B3 {}
B3a {}
B4 {xX*y}
B5 {}
B6 {}
B/ {xX*y}
exit {}

31

Globally Anticipatable (ANT)

e An expression’s value is
on entry to a block if

— every path from this point to exit includes a
computation of the expression

— it would be valid to place a computation of an
expression anywhere along these paths

Globally Anticipatable (ANT)
ANTin(i) = ANTloc(i) w (TRANSloc(i) N ANTout(i))

ANTout(i)= [|ANTin(})

j esucc(i)

ANTout(exit) = {}

Block ANTin ANTout
entry {a+1} {a+1}
Bl {a+1} {}
B2 {xX*y} {X*y}
B2a {x*y} {x*y}
B3 {> {r
B3a {xX*y} {xX*y}
B4 {xX*y} {}
B5 {x*y} {x*y}
B6 {> {}
B/ {xX*y} {r

exit {} {}

Earliest (EARL)

e An expression’s value is earliest on entry to
a block if

— no path from entry to the block evaluates the
expression to produce the same value as
evaluating it at the block’s entry would

Intuition:

« at this point if we compute the expression we are
computing something completely new

* says nothing about usefulness of computing expression

15-411/611

Earliest for ‘x*y’?

entry
Bl
zZ = a +1
x > 3
i/- ——
B2 B3
a=x%*y z < 7
y <5
ﬁZa B3a
S‘L
B4 B5 B6
b=x%*y v
B7
c=x *y

15-411/611

Earliest for ‘x*y’?

@entry
@ Bl
Z = a +1
x > 3
i/- ———p
@ B2 @ B3
a=x%*y z < 7
y <5
(@)
/\B‘Za B3a
SL
B4 B5 @ B6
b=x%*y v
B7
c=x *y

15-411/611

37

EARLinG): (| EARLour(j) Earliest (EARL)

jEpred(i)

EARLout(i) = TRANSloc(i) U (ANTin(i) ~ EARLin(i))

EARLin(entry)=U

Block EARLIN EARLout
entry | {a+1,x*y} {x*y}
B1 {x*y} {x*y}
B2 {x*y} {a+1}
B2a {a+1} {a+1}
B3 {x*y} {x*y}
B3a {x*y} {}
B4 {a+1} {a+1}
B5 {a+1} {a+1}
B6 {x*y} {x*y}
B7 {a+1} {a+1}
exit {a+1} {a+1}

EARLinG): (| EARLour(j) Earliest (EARL)

jEpred(i)

EARLout(i) = TRANSloc(i) U (ANTin(i) ~ EARLin(i))

EARLin(entry)=U

Block | TRANSIoc
entry {a+1,x*y}
Bl {a+1,x*y}
B2 {xX*y}
B2a {a+1,x*y}
B3 {a+1,x*y}
B3a {a+1,x*y}
B4 {a+1,x*y}
B5 {a+1,x*y}
B6 {a+1,x*y}
B7 {a+1,x*y}
exit {a+1,x*y}

Block EARLIN EARLout
entry | {a+1,x*y} {x*y}
B1 {x*y} {x*y}
B2 {x*y} {a+1}
B2a {a+1} {a+1}
B3 {x*y} {x*y}
B3a {x*y} {}
B4 {a+1} {a+1}
B5 {a+1} {a+1}
B6 {x*y} {x*y}
B7 {a+1} {a+1}
exit {a+1} {a+1}

EARLinG): (| EARLour(j) Earliest (EARL)

jEpred(i)
EARLout(i) = TRANSloc(i) U (ANTin(i) » EARLin(7))
EARLin(entry)=U

Block | TRANSIoc Block EARLIN EARLout
entry {} entry | {a+1,x*y} {x*y}
B1 {3 B1 {x*y} {x*y}
B2 {a+1} B2 {x*y} {a+1}
B2a {} B2a {a+1} {a+1}
B3 {3 B3 {x*y} {x*y}
B3a {3 B3a {x*y} {3
B4 {3} B4 {a+1} {a+1}
B5 {3} B5 {a+1} {a+1}
B6 {3 B6 {x*y} {X*y}
B7 {3} B7 {a+1} {a+1}
exit {1 exit {a+1} {a+1}

EARLinG): (| EARLour(j) Earliest (EARL)

jEpred(i)
EARLout(i) = TRANSloc(i) U (ANTin(i) » EARLin(7))
EARLin(entry)=U

Block | TRANSIoc | ANTIn ANTin

entry {} {a+1} {X*y}
Bl {} {a+1} {x*y}
B2 {a+1} {x*y} {a+1}
B2a {3} {x*y} {a+1}
B3 {> {J {a+1,x*y}
B3a {3 {x*y} {a+1}
B4 {3 {x*y} {a+1}
B5 {3 {x*y} {a+1}
B6 {} {} {a+1,x*y}
B/ {} {x*y} {a+1}
exit {} {} {a+1,x*y}

EARLIN EARLout
{a+1,x*y} {X*y}
{x*y} {x*y}
{x*y} {a+1}
{a+1} {a+1}
{X*y} {X*y}
{X*y} {r
{a+1} {a+1}
{a+1} {a+1}
{x*y} {X*y}
{a+1} {a+1}
{a+1} {a+1}

EARLinG): (| EARLour(j) Earliest (EARL)

jEpred(i)
EARLout(i) = TRANSloc(i) U (ANTin(i) » EARLin(7))
EARLin(entry)=U

@entry
{
@ B1
z = a +1
x > 3
/\
@ B2 @ B3
a=x%y z < 7
y <5

b=x*y

B4

N

B5

@ B6

!

B7

c=x*y

!

/

exit

Block EARLIN EARLout
entry | {a+1,x*y} {x*y}
B1 {x*y} {x*y}
B2 {x*y} {a+1}
B2a {a+1} {a+1}
B3 {x*y} {x*y}
B3a {x*y} {}
B4 {a+1} {a+1}
B5 {a+1} {a+1}
B6 {x*y} {x*y}
B7 {a+1} {a+1}
exit {a+1} {a+1}

Computationally Optimal

e |t is computationally optimal to compute
expression at entry to block if

exp € ANTin(block) (| EARLin(block)

e But, it may increase register pressure.

Anticipated for ‘x*y’ at input?

entry
Bl
zZ = a +1
x > 3
i/- ——
© B2 B3
a=x%*y z < 7
y <5
/RZa ©B3a
———T:EE;»lﬁii;_
© B4 o B5 B6
b=x%*y v

O B7
c =x *y
exit

Anticipated & Early (at input)

@entry
@ B1
Zz = a +1
x > 3
i/- —
Q@ B2 @ B3
a=x%*y z < 7
y <5
1
/\B‘Za B3a
© B4 ©@ B5 @ B6
b=x%*y v

O p7
c=x *y
exit

Delayedness (DELAY)

e An expression is on entry to a block if

— All paths from entry to block contain an
anticipatable and early computation of exp
(could be this block) AND all uses of exp follow
this block.

— |.e., exp can be delayed to at least this block.

15-411/611

Delayed for ‘x*y’

entry

A

Bl
= a +1
x > 3

@ B2

a=x %y

y <5

B4

X *y

/\BZa o BB{\B

6

48

Delayedness (DELAY)

DELAYin(i) = (ANTm(z) M EARLm(z)

jepred (i)

DELAYout(i) = ANTloc(i) " DELAYin(i)

DELAYin(entry) = ANTin(entry) N EARLin(entry)

(| DELAYout(j)

Block | DELAYin | DELAYout

entry {a+1} {a+1}
B1 {a+1} {3
B2 {xX*y} {>
Block | ANTin(i) n EARLin(i) B2a {3 {}
B3 {} {>

1

il et 32| ooy | oow
i s B4 O O
B3a {x*y} B5 {} {}
s |0 [0

15-411/611

Lateness (LATE)

e An expression is on entry to a block if

— it is the optimal point for computing the
expression and

— on every path from the block entry to exit, any
other optimal computation point occurs after
an expression computation in the original
flowgraph

i.e., there is no “later” placement for this expression

Latestness (LATE)

LATEin(i) = DELAYin(i) N (ANTloc(i) U (\DELAYin(j)]

j esucc(i)

Block LATEInNn
entry {3 enfry
Bl {a+1} B1
Z = a +1
B2 {X*Y} x > 3
B2a {} —
B2 B3
B3 {} a=x*y z <7
B3a {x*y?} y <3 /\
B3a
B4 {3 /\Bza —
BS {} B4 B5 BG
b=x*y]
B6 {} B7
B7 {} \‘c -
exit {} exit

Isolatedness (ISOL)

e An optimal placement in a block for the
computation of an expression is iff
— on every path from a successor of the block to

the exit block, every original computation is
preceded by the optimal placement point

Isolatedness (ISOL)

ISOLin(i) = LATEin(i)\w (ANTloc(i) N ISOLout(i))

ISOLout(i)= [ISOLin(j)

j esucc(i)

ISOLout(exit) = {}

Block ISOLin ISOLout
entry {> {>
Bl {a+1} {}
B2 {X*y} {r
B2a {r {>
B3 { {>
B3a {x*y} {
B4 {> {>
B5 {> {>
B6 {> {>
B/ {r {r
exit {} {}

Optimal Placement

eThe set of expression for which a given block
is the optimal computation point is the set of
expressions that are and

OPT(i) = LATEin(i) N ISOLout(i)

1111111111

Redundant Computations

eThe set of redundant expressions in a block
consist of those used in the block that are

REDN(i) = ANTloc(i) " LATEin(i)\w ISOLout(i)

1111111111

insert these
(if necessary)

OPT and REDN

Block OPT REDN
entry 1) 1)
Bl {a+1} {}
B2 1X*y} 1
B2a 1) 85
B3 1) 1)
B3a X*y} 1)
B4 1) IX*y}
BS 1 1
B6 1 1
B/ 1) IX*y}
exit {} {}

remove these

PRE Example

z = a +1
x > 3
i/- —
B2 B3
X *y z <

15-411/611

exit

Block | OPT | REDN
Bl |{a+1}| {3}
B2 | {X*yr| 17
B3a | «x*y} | {}
B4 [Ty
B7 XY

PRE Example

entry
1 4 data flow analyses later...
z = a +1
x > 3
L e
B2 B3
tl =x * y z < 7
a = tl
< 5
! B3a
/ﬁia tl =x *y
\/
B4 B6
b =tl B5
i
B7
c = tl

15-411/611

