
Assignment 2: L2 Statics as Inference Rules

15-411/611: Course Staff

Due Tuesday, February 11, 2025 (11:59PM)

Reminder: Assignments are individual assignments, not done in pairs. The work must
be all your own. Hand in your solutions on Gradescope. Please read the late policy for
written assignments on the course web page.

1 Inference Rules

The static semantics of imperative languages can become quite complicated to describe
precisely. For C0 (and L1-L5), the statics ensure three desirable properties of the language:

• type safety: expressions are well-typed, variables are assigned values of the correct
type, . . .

• variable initialization: variables are always initialized before use.

• proper returns: every control flow path in a function ends in a return.

Specifying the static semantics inductively with inference rules is useful because the rules
lead to a recursive algorithm for the semantic analysis.

We provide inference rules for type safety in the L2 handout. In this question, we con-
sider inference rules for the other two properties, which will help you when implementing
the semantic analysis for L2.

It might be helpful to review the lecture notes on inductive definitions from the boot-
camp.

ASSIGNMENT 2 TUESDAY, FEBRUARY 11, 2025 (11:59PM)

https://www.cs.cmu.edu/~janh/courses/411/24/lectures/01-inddef.pdf


L2 Statics as Inference Rules A2.2

2 Variable Initialization

In lecture and recitation we saw a formalization of variable initialization semantics, using
the judgment:

Γ; ∆ ⊢ s ⇒ ∆′

The intended meaning of the judgment is:

If the variables in Γ are declared and the variables in ∆ are initialized, then the
statement s does not use uninitialized variables, and, after executing s, leaves
∆′ variables initalized.

The context Γ here is the same as in the typechecking judgment, but in this question we
omit the types for simplicity.

The complete definition of the judgment is in Figure 1. We write ∆ ⊢ e to mean, “e uses
only variables in ∆”. Note the definition maintains the invariant that ∆ ⊆ ∆′ ⊆ Γ always.

Γ; ∆ ⊢ s1 ⇒ ∆′ Γ; ∆′ ⊢ s2 ⇒ ∆′′

Γ; ∆ ⊢ seq(s1, s2) ⇒ ∆′′
SEQ

Γ; ∆ ⊢ nop ⇒ ∆
NOP

Γ ∪ {x}; ∆ ⊢ s ⇒ ∆′

Γ; ∆ ⊢ declare(x, τ, s) ⇒ ∆′ \ {x}
DECLARE

∆ ⊢ e

Γ; ∆ ⊢ assign(x, e) ⇒ ∆ ∪ {x}
ASSIGN

∆ ⊢ e Γ; ∆ ⊢ s1 ⇒ ∆′ Γ; ∆ ⊢ s2 ⇒ ∆′′

Γ; ∆ ⊢ if(e, s1, s2) ⇒ ∆′ ∩∆′′
IF

∆ ⊢ e Γ; ∆ ⊢ s ⇒ ∆′

Γ; ∆ ⊢ while(e, s) ⇒ ∆
WHILE

∆ ⊢ e

Γ; ∆ ⊢ return(e) ⇒ Γ
RETURN

Figure 1: Definition of the Γ; ∆ ⊢ s ⇒ ∆′ judgment.

ASSIGNMENT 2 TUESDAY, FEBRUARY 11, 2025 (11:59PM)



L2 Statics as Inference Rules A2.3

We can use these rules to build derivation trees, where we prove the premises of each
rule by applying more rules. For example, we can prove the program in Figure 2 does not
use uninitialized variables with the derivation tree in Figure 3.

int main() {

int x;

x = 1;

return x;

}

declare(x, int,

seq(

assign(x, 1),

return(x)))

Figure 2: Example program.

{} ⊢ 1

{x}; {} ⊢ assign(x, 1) ⇒ {x}
ASSN

{x} ⊢ x

{x}; {x} ⊢ return(x) ⇒ {x}
RET

{x}; {} ⊢ seq(assign(x, 1), return(x)) ⇒ {x}
ASSN

{}; {} ⊢ declare(x, int, seq(assign(x, 1), return(x))) ⇒ {}
DECL

Figure 3: Derivation tree for the example program.

For simplicity we are taking the ∆ ⊢ e premises for granted (so long as they are true!).
Here, {} ⊢ 1 is true because 1 uses no variables, and {x} ⊢ x is true because the expression
uses one variable x, which is in {x}.

(a) Define a variable set ∆′ so that the following judgment is derivable and write a
derivation tree for the judgment.

{x, y}; {} ⊢ if(false, assign(x, 1), return(2)) ⇒ ∆′

You do not need to justify any expression initialization premises (the ∆ ⊢ e premises),
and you do not need to label the rules you use.

(b) Try to derive the following conclusion with a derivation tree.

{}; {} ⊢ seq(return(0), declare(x, int, return(x))) ⇒ {}

Explain informally why the derivation fails, by showing a partial derivation and
indicating where you got stuck.

ASSIGNMENT 2 TUESDAY, FEBRUARY 11, 2025 (11:59PM)



L2 Statics as Inference Rules A2.4

3 Proper Returns

For this problem, we define a judgment s returns, meaning that s is guaranteed to return
during execution. Below is the inference rule for declare(x, τ, s):

s returns

declare(x, τ, s) returns
DECLARE

(a) Complete the definition with rules for assign(x, e), if(e, s1, s2), while(e, s), return(e),
nop, and seq(s1, s2). Follow the informal definition provided in the L2 handout.

Hint: We express that a statement does not return by not including a rule for it. So,
some of the constructs will not have an associated rule.

(b) Using your definition, explain why the following program does NOT satisfy the
always-returns property:

s ≜ if(true, return(1), assign(x, 1))

Specifically, try to derive s returns and show where the derivation fails to make
progress.

ASSIGNMENT 2 TUESDAY, FEBRUARY 11, 2025 (11:59PM)


	Inference Rules
	Variable Initialization
	Proper Returns

