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Abstract

Catadioptric cameras are widely used to increase the

field of view using mirrors. Central catadioptric systems

having an effective single viewpoint are easy to model and

use, but severely constraint the camera positioning with re-

spect to the mirror. On the other hand, non-central cata-

dioptric systems allow greater flexibility in camera place-

ment, but are often approximated using central or linear

models due to the lack of an exact model. We bridge this

gap and describe an exact projection model for non-central

catadioptric systems. We derive an analytical ‘forward pro-

jection’ equation for the projection of a 3D point reflected

by a quadric mirror on the imaging plane of a perspective

camera, with no restrictions on the camera placement, and

show that it is an 8th degree equation in a single unknown.

While previous non-central catadioptric cameras pri-

marily use an axial configuration where the camera is

placed on the axis of a rotationally symmetric mirror, we

allow off-axis (any) camera placement. Using this analyt-

ical model, a non-central catadioptric camera can be used

for sparse as well as dense 3D reconstruction similar to

perspective cameras, using well-known algorithms such as

bundle adjustment and plane sweeping. Our paper is the

first to show such results for off-axis placement of camera

with multiple quadric mirrors. Simulation and real results

using parabolic mirrors and an off-axis perspective camera

are demonstrated.

1. Introduction

A catadioptric sensor combines a camera with a mirror to

increase the field of view (FOV) in a single photo. Such sen-

sors typically use quadric shaped mirrors such as spherical,

parabolic, elliptical, and hyperbolic, which are rotationally

symmetric along an axis. However, catadioptric cameras

are difficult to model due to the non-linear mapping of rays

from the scene to the camera pixels. This non-linear map-

ping in general does not result in a single viewpoint (central)

system and is difficult to model analytically.

Baker and Nayar [3] described the configurations for

achieving a central catadioptric system (CCS), in which all

the captured rays pass through a single virtual viewpoint

inside the mirror. These include (a) an orthographic cam-

era placed on the axis of a parabolic mirror, and (b) a per-

spective camera placed on the foci of a hyperbolic/elliptical

mirror. Although a CCS is easy to model due to an effective

single viewpoint, it severely restricts the placement of the

camera with respect to the mirror. In addition, other config-

urations such as using a spherical mirror [20, 21, 14, 12, 26],

using multiple mirrors [17, 8, 27] or off-axis placement of

camera with respect to a quadric mirror [5] will lead to a

non-central catadioptric system (NCCS). Finding a model

for NCCS will significantly enhance the class of mirrors

that can be used as well as lead to a simpler, easier and flex-

ible hardware implementation. It will allow flexible mir-

ror design to optimize for FOV, resolution characteristics or

image-to-world mappings. In addition, such a model will

allow fast sparse and dense 3D reconstruction using cata-

dioptric cameras similar to perspective cameras.

An exact projection model is described by the problem

of ‘Forward Projection’: What is the image projection of a

3D point reflected via a mirror? Previous approaches have

acknowledged the difficulty of coming up with an analyti-

cal projection model and have resorted to optimization or

search based techniques [20, 11, 19]. We refer to these

techniques as iterative forward projection (IFP) [1]. In this

paper, we solve this fundamental problem by deriving an

analytical equation that describes the optical path from a

3D point to a perspective camera via reflection through a

quadric mirror. We show that the projection of a 3D point

for a NCCS with a quadric mirror, with no restriction on the

camera placement, can be obtained by solving an 8th degree

polynomial equation in one unknown. Using this projection

model, we show how sparse and dense 3D reconstruction

can be performed for general catadioptric systems, similar

to perspective cameras. In particular, we show 3D recon-

struction using multiple parabolic mirrors and an off-axis

perspective camera. Compared to IFP, we obtain a speed-

up of 40X using our projection model.
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Contributions: Our paper makes the following contri-

butions:

• We describe an analytical solution of forward projec-

tion problem for NCCS with a quadric mirror, with no

restriction on the camera placement.

• We demonstrate fast sparse and dense 3D reconstruc-

tion for NCCS with off-axis camera placement. Our

approach avoids central or linear approximation and

offers a speed up of ∼ 40X compared to previous iter-

ative/search based techniques.

1.1. Related Work

Forward Projection (FP): The problem of determining

the mirror reflection point for a spherical mirror is popu-

larly known as the Alhazen’s problem, first formulated by

Ptolemy around 150 A.D. and later discussed extensively

by Alhazen around 1000 A.D. Since then, this problem has

fascinated mathematicians and several trigonometric as well

as algebraic solutions have been proposed [2, 10]. While a

spherical mirror has four solutions, it is assumed that there

is no closed-form or analytical solution for general mirrors.

Solving this problem analytically will be useful in several

fields beyond catadioptric imaging, including rendering for

computer graphics [6], image-based relighting [28], envi-

ronment matting and shape from specular flow [23].

While analyzing defocus in catadioptric systems, Baker

and Nayar [3] were unable to find an analytical solu-

tion for off-axis case and resorted to numerical methods.

They require off-axis analysis since estimating the defo-

cus blur requires pinhole placement over a finite aperture.

Ding et al. [8] used a general linear camera (GLC) model

for approximating forward projection for spherical mirrors.

Agrawal et al. [1] proposed a forward projection equation

for NCCS but only for the axial configuration, which re-

stricts the positioning of the camera. They showed 3D re-

construction only using spherical mirrors, since any cam-

era placement becomes an axial configuration for a spher-

ical mirror. We present the analytical solution for off-axis

case and show that the equation derived in [1] is a special

case. Vandeportaele [29] also analyzed forward projection

using a different approach involving intersection/tangency

of quadrics. However, his approach results in a higher de-

gree equation for several mirrors, both for off-axis camera

placement and axial configuration, and also results in more

complicated coefficients for the FP equation compared to

ours.

Sparse 3D Reconstruction: Catadioptric cameras have

been used for 3D reconstruction in previous works [14,

12, 17, 1, 20, 9, 22, 21]. In general, previous techniques

have used a central approximation and minimized 3D or

angular errors [19] instead of the image reprojection error.

Micusik and Pajdla [20] and Lhuillier [18] used a central

approximation for motion estimation followed by bundle-

adjustment to minimize the reprojection error for sparse re-

construction. However, similar to [19], [20] used an opti-

mization based approach for computing the mirror intersec-

tion point. Moreover, these approaches have only consid-

ered non-central axial configurations. Thus, previous ap-

proaches have not analyzed off-axis NCCS for 3D recon-

struction, which we demonstrate. We avoid any central or

GLC approximation and minimize the image reprojection

error, thanks to our analytical projection model.

Dense Volumetric Reconstruction: Modification of

stereo matching is often used for omnidirectional and

panoramic images by reprojecting the images onto a dif-

ferent coordinate system [4, 13]. Ding et al. [8] proposed

an epsilon-stereo constraint to allow slight vertical parallax

between two non-central cameras (using spherical mirrors).

However, as shown in [1], the epipolar curves for spheri-

cal mirror are quartic and thus the epsilon-stereo constraint

does not model the vertical parallax correctly. In addition,

a GLC approximation is used for fast forward projection,

by tessellating the image into triangles and associating a

GLC to each of them. Even when using the GLC approx-

imation, forward projection requires a search in the image

space: it needs to be checked if the projection of a 3D point

lies within the triangle associated with that GLC projection.

In contrast, our analytical projection model provides a one-

shot solution to the projection of 3D points without any ap-

proximation.

Taguchi et al. [27] proposed an axial-cone model to en-

able fast back-projection of rays using GPU for NCCS in

axial configuration. Using the axial-cone model, they apply

plane sweeping [7, 16] for dense 3D reconstruction. How-

ever, when using multiple mirrors with a single camera,

only a spherical mirror provides axial configuration for all

the mirrors, which is a severe restriction. Our FP equation

allows us to efficiently perform plane sweeping for multi-

ple non-spherical mirrors for dense volumetric reconstruc-

tion. Kuthirummal and Nayar [15] proposed non-central ra-

dial imaging systems for 3D reconstruction. However, their

setup is also axial. To the best of our knowledge, ours is

the first paper to show sparse and dense 3D reconstruction

using off-axis NCCS with multiple mirrors.

2. Forward Projection for NCCS

Consider a rotationally symmetric mirror described by

the following equation in the world coordinate system:

x2 + y2 + Az2 + Bz − C = 0. (1)

Let the mirror axis be aligned with the z axis. On any plane

containing the mirror axis, the mirror profile is given by a

2D conic r2+Az2+Bz−C = 0. This parametrization [25]

describes spherical mirror (A = 1, C + B2/4 > 0) along

with parabolic (A = 0, C = 0), hyperbolic (A < 0, C < 0)
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Figure 1. Use of pre-rotation and reflection plane π to simplify the

derivation of FP equation.

and ellipsoidal (A > 0, C > 0) mirrors. Consider a pin-

hole camera placed at location COP = [cx, cy, cz]
T and a

given 3D point P = [X,Y,Z]T as shown in Figure 1 (left).

The problem of forward projection is to find the point M on

the mirror, such that ray joining COP with M after reflec-

tion passes through the given point P. Note that unlike the

derivation in [1], the analysis cannot be performed in a 2D

plane containing the mirror axis.

Let vi = M − COP be the incoming ray, n be the nor-

mal of the mirror at M, and vr = P − M be the reflected

ray. From the law of reflection, the following constraints

are well-known: (a) Planarity: vi, vr, and n lie on the same

plane, and (b) Angle Constraint: Angle between vi and n is

equal to the angle between vr and n. These two constraints

result in the following reflection equation:

vr = vi − 2n(vT
i n)/(nT n). (2)

In addition, since the point M lies on the mirror, it has to

satisfy the mirror equation (1). We now present two key

ideas to simplify the derivation of FP equation.

2.1. PreRotation

Since the mirror is rotationally symmetric around the z
axis, the entire coordinate system can be rotated around it

to place the COP on the y axis, as shown in Figure 1 (right).

Let t =
√

c2
x + c2

y . Specifically, we compute the rotation

matrix R =





cy/t −cx/t 0
cx/t cy/t 0
0 0 1



 such that R ∗ COP =

[0, dy, dz]
T . By setting the x component of COP to be zero,

we reduce the degree of subsequent equations, making it

easier to solve. Note that this rotation is independent of the

3D point P. Let PR = R ∗ P = [u, v, w]T be the new loca-

tion of P after rotation. We compute the mirror intersection

point MR in this coordinate system and rotate it by R−1 to

obtain the mirror intersection point in the original coordi-

nate system.

2.2. Use of Reflection Plane π

Let MR = [x, y, z]T . Let π denote the reflection plane

on which vi, vr, and n lie. The normal at MR can be com-

puted from the mirror equation to be

n = [x, y,Az + B/2]T . (3)

Since the mirror is rotationally symmetric around the z axis,

the normal intersects the z axis at point K = [0, 0, z−Az−
B/2]T , which also lies on π. Thus, the equation of π can be

obtained using the points K, COPR and PR and is given by

c1(z)x + c2(z)y + c3(z) = 0, (4)

where

c1(z) = (B + 2Az)(dy − v) + 2dy(w − z) + 2v(z − dz),

c2(z) = u(B + 2dz − 2z + 2Az),

c3(z) = udy(B + 2Az).

The key point to note is that the equation for π is linear in

x and y. Using this equation, we can easily compute x in

terms of y and z as

x =
−c2(z)y − c3(z)

c1(z)
. (5)

Substituting x in the mirror equation gives us our first inter-

mediate equation IE1

IE1 : (c2

1
(z) + c2

2
(z))y2 + 2c2(z)c3(z)y

+ c2

3
(z) + c2

1
(z)(Az2 + Bz − C) = 0.

(6)

Note that this equation is quadratic in y, although the co-

efficients are functions of z. This equation describes the

curve Γ given by the intersection of plane π with the mir-

ror, on which reflection can happen. However, the correct

point on this curve has to satisfy the angle constraint. Next,

we show that by using the law of reflection, we obtain an-

other intermediate equation IE2, which is also quadratic in

y. By eliminating y between IE1 and IE2, we finally obtain

a single 8th degree equation in z.

2.3. Obtaining IE2 using Law of Reflection

To obtain IE2, we use the constraint that the reflected ray

vr should pass through the given point PR, yielding,

vr × (PR − MR) = 0, (7)

where × denotes the cross product. The incoming ray vi is

given by

vi = MR − COPR = [x, y − dy, z − dz]
T . (8)

By substituting vi and n in the reflection equation (2), we

obtain vr. Then vr is substituted in (7) along with PR and

MR, resulting in the following three equations (since the

cross product is in 3D):

E1 : k11(z)x + k12(z)y + k13(z)xy + k14(z)y2

+ k15(z) = 0.

E2 : k21(z)x + k22(z)y + k23(z)xy + k24(z) = 0.

E3 : k31(z)y2 + k32(z)y + k33(z) = 0.

(9)
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The coefficients kij(z) are given in the supplementary ma-

terials. We note that the three equations in (9) are not inde-

pendent. Substituting x using (5) in any of these three equa-

tions leads to the same equation. Thus, these are dependent

equations and any one of them can be chosen for IE2. No-

tice that E3 is independent of x, and thus we choose it to be

IE2. If pre-rotation is not performed, E1, E2, and E3 will

have higher degree terms in x and y, making it more diffi-

cult to solve and will lead to a higher degree FP equation.

One can also show that the equation of plane π can

be obtained by manipulating these three equations as fol-

lows: (a) Eliminate y2 from E1 and E3 to get equation

E4 ≡ k14(z)E3 − k31(z)E1, and (b) Eliminate xy from

E2 and E4. However, this is non-obvious. Thus, use of

plane π simplifies the derivation.

2.4. Obtaining Forward Projection Equation

Now we eliminate y from IE1 and IE2 to obtain a single

equation in only one unknown z. Notice that there are no x
terms in both IE1 and IE2. We first rewrite IE1 and IE2 as

IE1 : k41(z)y2 + k42(z)y + k43(z) = 0,

IE2 : k31(z)y2 + k32(z)y + k33(z) = 0,
(10)

where k41(z) = c2

1
(z) + c2

2
(z), k42(z) = 2c2(z)c3(z) and

k43(z) = c2

3
(z) + c2

1
(z)(Az2 + Bz − C). Eliminating y2,

we get

y = −
k41(z)k33(z) − k31(z)k43(z)

k41(z)k32(z) − k31(z)k42

. (11)

Substituting y back into either IE1 or IE2 gives the desired

forward projection equation:

k41(z)
(

k43(z)k2

32
(z) − k42(z)k32(z)k33(z) + k41(z)k2

33
(z)

)

− k31(z)(−k33(z)k2

42
(z) + k43(z)k32(z)k42(z)

+ 2k41(z)k43(z)k33(z)) + k2

43
(z)k2

31
(z) = 0.

After simplification1, this turns out to be an 8th degree poly-

nomial equation in z. The coefficients depend on the known

mirror parameters (A,B,C), the known location of COP

(dy, dz) and the known 3D point (u, v, w).
By setting dy = 0, the NCCS reduces to the axial config-

uration. In that case, we obtain a 6th degree equation equiv-

alent to the equation derived in [1]. Thus, the FP equation

derived in [1] for axial NCCS is a special case of our FP

equation for general off-axis NCCS.

3. Analysis of Forward Projection Equation

Table 1 lists the degree of FP equation for various mir-

ror shapes and camera placement. SVP refers to single-

viewpoint configuration, while NSVP refers to non-single

1Supplementary materials contain Matlab code deriving this equation

along with intermediate steps.

Table 1. Degree of forward projection equation for various quadric

mirrors and camera placement. A − indicates that single-

viewpoint constraint (SVP) may be impossible or unpractical to

achieve. NSVP refers to non-single viewpoint.

Mirror Shape Parameters Camera Placement

Off-Axis Axial

NSVP SVP

General A, B, C 8 6 -

Spherical A = 1, B = 0, C > 0 4
‡ -

Elliptical A > 0, B = 0, C > 0 8 6 2

Hyperbolic A < 0, B = 0, C < 0 8 6 2

Parabolic A = 0, C = 0 7 5 2
†

Conical A < 0, B = 0, C = 0 4 2 -

Cylindrical A = 0, B = 0, C > 0 4 2 -

‡ For a spherical mirror, any camera placement is axial configuration with NSVP.

† Orthographic camera placed on the mirror axis.

COP

P

n

Mirror Axis
P

n

COP

Mirror Axis

Figure 2. Visualization of forward projection for a hyperbolic mir-

ror (left) and a parabolic mirror (right).

viewpoint configuration. A − indicates that SVP constraint

may be impossible or unpractical to achieve with that par-

ticular mirror.

For a general quadric and off-axis camera placement,

the FP equation has a degree of 8. For a parabolic mirror

(A = 0, C = 0), the degree reduces to 7. For a cylindrical

mirror polished on outside (A = 0, B = 0, C > 0), the

degree reduces to 4 for off-axis camera placement. Axial-

configuration with cylindrical mirror is practical when the

mirror is polished on the inside [15]. The degree of FP equa-

tion in that case reduces to 2. Figure 2 shows an example

of computed mirror intersection point along with incoming

and reflected rays for hyperbolic and parabolic mirrors.

Note that when A 6= 0, B can be set to 0 by shifting

the mirror along the z axis. Table 1 also shows the de-

gree of FP equation for conical (C = 0, A < 0), hyper-

bolic (A < 0, C < 0), and ellipsoidal (A > 0, C > 0)
mirrors. For mirrors and camera placement satisfying the

single-viewpoint constraint (SVP), the degree is 2. This is

obvious, since the mirror intersection point can be obtained

by finding the intersection of the mirror with the ray joining

the given 3D point and the effective (virtual) center of pro-

jection. For other radial imaging systems [15] using mirrors

polished on inside (A < 0, C > 0), the degree of forward

projection equation is 8 and 6 for off-axial and axial camera

placement respectively. We note that [15] describes epipolar

geometry and 3D reconstruction for radial imaging systems,

but does not derive the forward projection equation.

In contrast, the approach in [29] using intersection and
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tangency of quadrics results in higher degree equations for

both off-axis camera placement and axial configuration. For

off-axis camera placement, [29] reports 6th degree equation

for cylindrical mirror and 8th degree equation for conical

mirror, compared to 4th degree equation we obtain for both

of these mirrors. For axial configuration, [29] reports 6th

degree equation for conical mirror and 8th degree equation

for ellipsoidal mirror, compared to 2nd degree equation and

6th degree equation we obtain respectively.

Numerical Accuracy and Run-Time: To solve the FP

equation, we use the Matlab roots command, which com-

putes the eigenvalues of the corresponding companion ma-

trix. The correct solution is found by checking the Snell’s

law for each real solution. Using a hyperbolic mirror with

parameters A = −1.2, B = 3.4 and C = −33.2, we per-

formed 105 trials by choosing random locations for the COP

and 3D point P . The median error in angle constraint was

of the order of 10−10. Thus, our FP equation is numerically

stable to compute the mirror intersection point. Projection

of 105 points took 41.4 seconds using our analytical FP

equation compared to 1695.6 seconds using IFP in Matlab

on a standard PC. Thus, our analytical FP equation offers a

40 times speed up over iterative forward projection. For 3D

reconstruction, this amounts to reducing the run-time from

approximately two days to one hour.

4. 3D Reconstruction using NCCS

Sparse and dense 3D reconstruction using perspective

cameras is a well-studied problem in computer vision and

has matured significantly over the last two decades. How-

ever, 3D reconstruction using non-central catadioptric cam-

eras is considered challenging, due to the lack of exact mod-

els. Previous work has been mostly restricted to axial con-

figurations, e.g., a perspective camera placed on the axis of

a spherical or hyperbolic mirror [20]. We now show that

using our FP equation, sparse and dense 3D reconstruction

can be done efficiently for the general case of off-axis cam-

era placement.

4.1. Sparse 3D Reconstruction in Simulations

We first describe sparse 3D reconstruction using bun-

dle adjustment (BA) in simulations. We choose a setup

of a single perspective camera looking at four identical

parabolic mirrors. The equation of each mirror is given by

x2+y2+40z = 0. The vertices of the four parabolic mirrors

are placed at [±20,±20, 200] mm in the camera coordinate

system and their axes are aligned to the z axis; thus the cam-

era is significantly off-axis for all the mirrors. The internal

camera calibration and mirror parameters are assumed to be

known. We randomly place 3D points in a hemisphere cen-

tered at [0, 0, 200] with a radius of 1000 mm, and compute

the ground truth projections for all points and for all mirrors

using our FP equation. Gaussian noise (σ = [0 − 1] pixels)

P

M

COP

(a) Our FP

P

V

M’

Focus

COP

(b) Central Approx.

P

M’’

COP

(c) Axial Approx.

Figure 3. (a) Our FP equation computes the exact mirror reflec-

tion point M given the COP and the 3D point P . (b) Achieving

central approximation by using the focus of the parabola as the vir-

tual projection center V and computing M
′. (c) Achieving axial

approximation by placing the COP on the mirror axis to compute

M
′′ using [1].

is then added to the ground truth image projections, as well

as location (σ = 0.5 mm) and orientation (σ = 1◦) of all the

mirrors. Initial reprojection error was 5% of the image size

and the initial 3D RMSE error was ∼ 450 mm. The bundle

adjustment optimization involves estimating the calibration

(location and axis of mirror) along with the location of 3D

points from noisy observations and the initial calibration es-

timates. The initial estimates of the 3D points are obtained

by back-projecting corresponding rays and finding their in-

tersection. Then the image reprojection error is minimized.

We compare the reconstruction errors using (a) our FP

equation, (b) central approximation, (c) axial approxima-

tion, and (d) iterative forward projection (IFP). Figure 3

shows how we compute the mirror reflection point using

central and axial approximations. For IFP, we first use the

central approximation to compute the initial estimate of the

image projection and then refine it by minimizing the dis-

tance between the 3D point and the back-projected ray using

non-linear optimization. Figure 4 shows estimation errors

for different image noise levels. Note that the small mir-

ror pose perturbation (location σ = 0.5 mm and orientation

σ = 1◦ in this experiment) severely affects the 3D recon-

struction performance (shown as initial errors). Both central

and axial approximations fail to correct the errors in calibra-

tion and 3D point locations. In contrast, our analytical FP

and IFP show the same estimation performance; however,

the average run time of bundle adjustment using our FP was

only 13 seconds, while that of IFP was 560 seconds, since

IFP requires iterative optimization for each forward projec-

tion. Thus, we achieve a speed up of ∼ 40X.

4.2. Sparse 3D Reconstruction using Images

We now analyze sparse 3D reconstruction results us-

ing synthetic images generated in POV-Ray as well as real

dataset (Figure 5). Our reconstruction procedure consists of

the following three steps: (a) estimate initial pose of all mir-

rors, (b) compute corresponding feature points across mir-

ror images, and (c) iterate bundle adjustment with outlier re-

moval. The initial mirror pose is estimated by marking sev-
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Figure 4. Bundle adjustment simulations using four parabolic mirrors and 100 3D points for different image noise levels. From left to

right: Reprojection error, RMSE of reconstructed 3D points, mirror position estimation error, and mirror orientation estimation error. Both

central and axial approximation fail to correctly minimize the reprojection error as well as error in reconstructed 3D points.
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Figure 5. (Left) Synthetic image rendered with POV-Ray and zoom of a mirror image. (Right) Real captured photo and zoom of a mirror

image. SIFT feature correspondences across mirror images are superimposed on the zoomed in mirror images. Red dots and green crosses

respectively represent inliers and outliers determined by our iterative bundle adjustment procedure.

eral points on the mirror boundary and computing the cor-

responding rays in 3D. Since the mirror section boundary

is a 2D circle with a known radius, its position/orientation

can be computed in 3D such that these rays pass through the

circle. Correspondences across mirror images are obtained

using SIFT features. Finally, we iterate bundle adjustment

by removing outliers of the SIFT correspondences if the re-

projection error of the reconstructed 3D point is greater than

twice the average reprojection error as in [1].

Result using POV-Ray: Figure 5 (left) shows a 2000 ×

2000 pixels rendered image of four parabolic mirrors placed

at [±15,±15, 200] mm in the camera coordinate system.

The mirrors are surrounded by a cube of 1000 mm, whose

walls are textured. Instead of using the ground truth values

for each mirror pose, we estimated it as described above.

This introduced a position estimation error of 0.14 mm and

an orientation estimation error of 0.94◦ (averaged over four

mirrors). In Section 4.3, we demonstrate that this calibra-

tion error can result in significant errors in subsequent dense

volumetric reconstruction. Figure 6 demonstrates that our

iterative bundle adjustment process reconstructs the cor-

rect 3D points by refining the mirror pose estimates. By

using the refined calibration after bundle adjustment, the

dense volumetric reconstruction is improved as shown in

Section 4.3.

Result using Real Setup: We captured a 22 megapixel

photo of four parabolic mirrors (x2 + y2 + 40z = 0, cross-

section radius 20 mm) with an interval of ∼ 80 mm (Fig-
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Figure 7. Sparse 3D reconstruction results for the real image.

(Left) Reprojection error with BA iterations. Initial reprojection

error was 87 pixels for 22 megapixel image. (Right) Visualization

of the reconstructed 3D points before and after BA.

ure 5 (right)) using a Mamiya 645AFD camera. The res-

olution of each mirror image was ∼ 2M pixels. The mir-

rors are cut using a milling machine and have surface arti-

facts, leading to jagged edges in the image. The distance be-

tween the camera and the mirrors was ∼ 480 mm. The ini-

tial mirror poses were computed using the boundary-based

approach described above. Figure 7 (right) shows the re-

constructed 3D points along with their corresponding fitted

planes. Again note that before bundle adjustment, the 3D

points are incorrectly reconstructed near the mirrors.

4.3. Dense Volumetric 3D Reconstruction

Ding et al. [8] used a GLC approximation to perform fast

forward projection for dense reconstruction with spherical

2998



0 2 4 6 8
0.1

0.2

0.3

0.4

0.5

Iterations (Bundle Adjustment/Outlier Removal)

R
e

p
ro

je
c
ti
o

n
 E

rr
o

r 
[p

ix
e

ls
]

0 2 4 6 8
0

100

200

300

400

Iterations (Bundle Adjustment/Outlier Removal)

E
rr

o
r 

fr
o

m
 G

ro
u

n
d

 T
ru

th
 P

la
n

e
 [

m
m

]

 

 

Center Plane
Right Plane
Left Plane
Top Plane
Bottom Plane

Parabolic 
mirrors Camera

Reconstructed 3D Points

Before

After

Figure 6. Sparse 3D reconstruction results for synthetic image generated using POV-Ray. (Left) Reprojection error decreases with the

bundle adjustment (BA) and outlier removal iterations. Initial reprojection error was 32 pixels for 4 megapixel image. (Middle-Left)

Average distance error of reconstructed 3D points from the ground truth planes shown in Figure 5. (Right) Visualization of the reconstructed

3D points before and after BA from two different viewpoints. Before BA, the 3D points are incorrectly reconstructed near the mirrors.

Setup for Plane Sweep based Depth Map ReconstructionBefore Bundle Adjustment

Depth Map

S
y
n

th
e

ti
c
 I
m

a
g

e
R

e
a

l 
Im

a
g

e

After Bundle Adjustment

Depth Planes Parabolic Mirrors

Virtual 
Camera

Depth Map Virtual Perspective Image Novel View Rendering using Texture-Mapped Depth Map

Real 
Camera

Figure 8. Using the refined calibration after BA significantly improves the dense depth map compared to that obtained using the initial

calibration before BA. For synthetic image, the estimated depth map is close to ground truth after BA, even without any regulariza-

tion/smoothing. FOV of the depth maps and virtual perspective images is 120
◦ × 120

◦. Bottom-right show the depth map rendered from

two novel viewpoints and textured using the virtual perspective image. Black pixels correspond to regions that are occluded or are outside

the FOV. All the images in this figure are horizontally flipped to visually match the scene layout with the input images.

mirror array. Our analytical FP equation avoids GLC ap-

proximation and enables us to perform fast volumetric 3D

reconstruction using plane sweeping [7, 16]. As shown in

Figure 8, we place a virtual camera at the center of the four

parabolic mirrors and define a set of depth planes in the co-

ordinate system of the virtual camera. For each mirror, we

compute a set of layer images by computing the image pro-

jection of all the 3D points on the depth planes. This pro-

duces four images corresponding to four mirrors for each

depth plane. We compute normalized cross correlation be-

tween them as the matching cost. Averaging the four images

for each depth plane produces refocusing effect [27].

Figure 8 shows depth maps computed using the mirror

pose estimates before and after bundle adjustment. We gen-

erated the depth maps using the resolution of 400 × 400
pixels, and using 20 and 40 depth planes for the synthetic

and real images, respectively. The depth map of the syn-

thetic image was generated by simply selecting the depth

having the best matching cost without smoothing. For the

real image, we regularized the matching cost using stan-

dard graph cuts approach used for stereo matching. Similar

to sparse 3D reconstruction case, the initial mirror poses

produce large errors in the estimated depth maps. Bundle

adjustment refines the mirror pose estimates and enables to

produce high-quality depth maps. A virtual perspective im-

age from the virtual viewpoint is generated using the depth

map; this corresponds to distortion correction of non-central

images using scene geometry [24]. Figure 8 also shows

novel viewpoint rendering using the virtual perspective im-

age and texture mapped depth map from two novel view-

points.

5. Conclusions

By deriving an analytical projection model for non-

central catadioptric cameras, our paper bridges the gap be-

tween perspective and catadioptric cameras for applications
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such as 3D reconstruction. It makes non-central catadiop-

tric cameras as attractive and easy to use as perspective

cameras. We demonstrated a complete pipeline for 3D re-

construction using NCCS: feature matching and bundle ad-

justment for sparse 3D reconstruction by minimizing the

image reprojection error, followed by dense volumetric re-

construction. Several algorithms developed for perspective

cameras can be directly applied to NCCS by replacing the

perspective projection equation with the derived FP equa-

tion. We hope that the our paper will stimulate further

research in modeling and analysis of catadioptric imaging

systems along with designing better image features tailored

for catadioptric images. Computing exact light path via

quadric mirror reflection may be useful in other applica-

tions such as rendering of specular surfaces, specular shape

estimation, as well as modeling and simulation of general

mirror based imaging systems.
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