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Abstract

Flat refractive geometry corresponds to a perspective

camera looking through single/multiple parallel flat refrac-

tive mediums. We show that the underlying geometry of

rays corresponds to an axial camera. This realization, while

missing from previous works, leads us to develop a general

theory of calibrating such systems using 2D-3D correspon-

dences. The pose of 3D points is assumed to be unknown

and is also recovered. Calibration can be done even using

a single image of a plane.

We show that the unknown orientation of the refract-

ing layers corresponds to the underlying axis, and can be

obtained independently of the number of layers, their dis-

tances from the camera and their refractive indices. Inter-

estingly, the axis estimation can be mapped to the classical

essential matrix computation and 5-point algorithm [15]

can be used. After computing the axis, the thicknesses of

layers can be obtained linearly when refractive indices are

known, and we derive analytical solutions when they are

unknown. We also derive the analytical forward projection

(AFP) equations to compute the projection of a 3D point via

multiple flat refractions, which allows non-linear refinement

by minimizing the reprojection error. For two refractions,

AFP is either 4th or 12th degree equation depending on the

refractive indices. We analyze ambiguities due to small field

of view, stability under noise, and show how a two layer sys-

tem can be well approximated as a single layer system. Real

experiments using a water tank validate our theory.

1. Introduction

A camera observing a scene through multiple refrac-

tive planes (e.g. underwater imaging) results in distortions

and gives the illusion of scene being closer and magni-

fied. While 3D reconstruction in such scenarios has been

analyzed in multi-media photogrammetry [9, 20, 18], such

imaging setups have been relatively unaddressed in com-

puter vision community until recently. Calibrating such a

system with multiple layers with unknown layer orienta-

tion, distances and refractive indices remains an open and

challenging problem.

The fact that such systems do not correspond to a single
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Figure 1. (Left) Flat refractive geometry with n layers. (Middle)

The entire light-path for each pixel lies on a plane and all planes

intersect in a common axis passing through the camera center.

(Right) After computing the axis, analysis can be done on the plane

of refraction to estimate layer thicknesses and refractive indices.

viewpoint system is known (see, for example, [25]). How-

ever, we show that the underlying geometry of rays in such

systems actually corresponds to an axial camera. This re-

alization, which has been missing from previous works to

the best of our knowledge, allows us to handle multiple lay-

ers in a unified way and results in practical and robust algo-

rithms. Firstly, we show that the unknown orientation of the

refractive layers corresponds to the underlying axis, which

can be estimated independently of the number of layers,

their distances and their refractive indices. This results in

considerable simplification of the calibration problem via a

two-step process, where the axis is computed first. Without

such simplification, the calibration is difficult to achieve.

Secondly, we show that the axis estimation can be mapped

to the classical relative orientation problem (essential ma-

trix estimation) for which excellent solutions (e.g. 5-point

algorithm [15]) already exist. In fact, calibration can be

done using a single plane similar to [23]. Our primary con-

tributions are as follows.

• We show that the geometry of rays in flat refraction

systems corresponds to an axial camera, leading to a

unified theory for calibrating such systems with multi-

ple layers.

• By demonstrating the equivalence with classical essen-

tial matrix estimation, we propose efficient and robust

algorithms for calibration using planar as well as non-

planar objects.
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• We derive analytical forward projection equations for

multiple refractions, which allows minimizing the re-

projection error.

• We analyze ambiguities with small FOV, and show that

multiple layer systems may be well-approximated by

single/two-layer systems.

1.1. Related Work

Maas [13] considered a three layer system assuming that

the image plane is parallel to the refractive interfaces. His

approach corrects for the radial shift of the projected 3D

points using optimization. Treibitz et al. [25] considered a

single refraction with known refractive index in an under-

water imaging scenario. They assume the distance of the

interface as the single unknown parameter (when the cam-

era is internally calibrated) and perform calibration using

known depth of a planar checkerboard. The image plane is

parallel to the interface in their setup as well. In contrast, we

(a) do not assume that the refractive interfaces are fronto-

parallel, (b) handle multiple layers with unknown layer dis-

tances, (c) consider known/unknown refractive indices, and

(d) do not assume known pose of the calibrating object. We

only assume that the camera is internally calibrated.

3D reconstruction under reflections/refractions has been

explored in [3, 14, 19, 1, 21] either for reconstructing the

scene or the medium itself. Chen et al. [3] captured two

images, with and without a thick glass slab for 3D recon-

struction. Both images are required to estimate the orienta-

tion of the slab and an additional image to obtain the refrac-

tive index. We show that a single set of 2D-3D correspon-

dences from a single photo allows estimating medium thick-

ness as well as refractive index. Other works assume known

vertical direction [1] or require several images for calibra-

tion [19]. Steger and Kutulakos [21] showed that light-path

triangulation becomes degenerate when the entire light-path

lies on a plane, which is the case here. Their goal is to com-

pute the shape of the refractive medium, and they consider

each light-path independently. In contrast, we know par-

tial knowledge of shape (flat parallel layers), and light-paths

can be parameterized. Thus, we can use information from

multiple-light paths to compute the calibration parameters.

For two refractions (air-medium-air), our analysis is consis-

tent with [21] in that the distance to the medium cannot be

estimated. However, we show theoretically that if all refrac-

tive indices are different, light paths are not degenerate for

any number of layers.

Refractions have also been modeled using ray-

tracing [10, 12] for calibration. Kotowski [10] proposed

a bundle-triangulation framework where the points of re-

fraction are computed iteratively, starting with a central ap-

proximation. In contrast, we derive analytical forward pro-

jection (AFP) equations for computing the projection of a

3D point via multiple refractions. This allows non-linear re-

finement of the initial solution by minimizing the reprojec-

tion error. For single refraction, AFP is a 4th degree equa-

tion [5]. For two refractions, we derive a 4th/12th degree

equation depending on refractive indices.

Non-Central/Axial Cameras: Pless [16] proposed algo-

rithms for relative motion estimation for calibrated non-

central cameras. Chari and Sturm [2] showed the existence

of geometric entities such as fundamental matrix consider-

ing refraction. Generic camera calibration algorithms [22]

have been proposed to calibrate non-central cameras. Li et

al. [11] analyzed the degeneracies in axial cameras for

motion estimation. Ramalingam et al. [17] proposed

a general framework for calibrating axial cameras using

three checkerboards. Their parameterization does not use

camera-side rays and involves two rotations/translations. In

contrast, we parameterize the axis to pass through the cam-

era and use camera-side rays, allowing calibration from a

single plane. However, we use their insight that the axis

can be computed first. Models based on radial distortion for

calibration assume known center of distortion [24] or model

each distortion circle separately [23]. We use a global

model with fewer parameters for flat refractive systems.

2. General Flat Refractive Geometry

Consider the general setup for flat refractive geometry

as shown in Figure 1, where a perspective camera observes

a known calibration object via n flat refraction layers. We

work in the camera coordinate system with the camera cen-

ter at the origin. Let n denote the common surface normal

to all the layers and [di, µi] be the thickness and refractive

index of the ith medium respectively. d0 represents the dis-

tance between the camera and the first layer. Let P(i)Ki=1

denote K 3D points on the object which are known in the

object coordinate system and let [R, t] be the unknown rigid

transformation of these points.

2.1. Flat Refraction Constraint

We assume that the internal camera calibration has been

done offline and hence we know the camera ray v0(i) for

each 3D point P(i). Let [v0(i), v1(i), . . . , vn(i)] denote

the direction vectors of each segment of the corresponding

light-path. The last refracted ray vn should be parallel to

the line joining the transformed 3D point RP+ t and the re-

fraction point qn on the last layer. Thus, the following Flat

Refraction Constraint (FRC) should be satisfied.

FRC : (RP + t − qn)× vn = 0, (1)

where × denotes the cross-product. Our goal is to estimate

the unknown calibration parameters n, [di]
n−1

i=0
, [µi]

n
i=0 as

well as the unknown pose [R, t] given K 2D-3D correspon-

dences [v0(i),P(i)]Ki=1.

From Snell’s law, µi sin θi = µi+1 sin θi+1, where θi is

the angle between vi and n. This can be written in vector



form [6] as

vi+1 = ai+1vi + bi+1n, (2)

where ai+1 = µi/µi+1 and

bi+1 =
−µiv

T
i n −

√
µ2
i (v

T
i n)2 − (µ2

i − µ2
i+1

)vT
i vi

µi+1

. (3)

Since Snell’s law only depends on the ratio of the refractive

indices, we assume µ0 = 1 without loss of generality. We

first derive the FRC for a single layer and a single 3D point

P. The refraction point q1 equals −d0v0/(v
T
0 n). Substitut-

ing in (1),

(RP+ t)× (a1v0 + b1n) + b1d0(v0 × n)/(vT
0 n) = 0. (4)

After substituting for a1 and b1 and removing the square

root term in b1, we get an equation with second order terms

of R, t and µi and sixth order terms of n. Thus, directly

solving the FRC is quite difficult. More importantly, the

complexity of the FRC equation increases with each addi-

tional layer due to the square root term in each bi. Thus,

in order to solve this problem efficiently, we need to ana-

lyze the geometry of underlying rays to derive simpler con-

straints. In the next section, we describe coplanarity con-

straints that allow us to estimate the normal n and 5 out of

6 pose parameters independently of di’s and µi’s.

3. Coplanarity Constraints

Axial Camera: We first show that an n-layer flat refraction

system corresponds to an axial camera. The axis is defined

as the line parallel to n passing through the camera center

(origin) and let A be its direction vector. Let π be the plane

of refraction (POR) containing the axis and a given camera

ray. The normal n lies on π. From Snell’s law, the incoming

ray, the normal and the refracted ray lie on the same plane

at any refraction boundary. Hence, by induction, the entire

light-path should lie on π and the last refracted ray should

intersect the axis, since both of them are coplanar. Thus, all

outgoing rays intersect the axis and the system is axial.

The transformed 3D point RP + t should also lie on π.

Thus, the coplanarity constraint for each 3D point can be

written as

Coplanarity : (RP + t)T (A × v0) = 0, (5)

where (A × v0) is the normal to POR. Note that the copla-

narity constraint is independent of the number of layers n,

their thicknesses di, and the refractive indices µi. It only

depends on the axis and pose parameters.

3.1. Axis Computation

Let X(:) be the vector formed by stacking the columns

of a matrix X and let ⊗ denote the kronecker product. Let

[A]× be the 3 × 3 skew-symmetric matrix obtained from

3-vector A. The coplanarity constraint can be re-written as

0 = vT0 (A × (RP + t)) = vT0 EP + vT0 s, (6)

where E = [A]×R and s = A × t. Note that sT A = 0 and

thus the full translation t cannot be estimated using copla-

narity constraints. The component of t in the direction of

axis, tA, vanishes in s. Thus, we have 7 degrees of freedom:

2 for axis, 3 for rotation and 2 for translation.

11-point Linear Algorithm: Stacking equations for 11
correspondences, we get a linear system






(P(1)T ⊗ v0(1)
T ) v0(1)

T

...
...

(P(11)T ⊗ v0(11)
T ) v0(11)

T






︸ ︷︷ ︸

B

[
E(:)

s

]

= 0, (7)

where B is a 11 × 12 matrix whose rank is 11. Let B =
UΣV T be the SVD of B. The solution is given by the right

null singular vector of B (last column of V ). The scale

factor is obtained by setting the norm of E to one.

8-point Algorithm: Notice the striking similarity between

our E matrix ([A]×R) and the essential matrix [8] for rela-

tive motion between two perspective cameras ([t]×R). This

implies that we can map the axis estimation to the 5-point

algorithm for essential matrix computation [15]. Given 8
correspondences, we obtain a 8 × 12 matrix B as above.

Let V4
i=1 be the right null singular vectors of B. The solu-

tion lies in a four dimensional subspace

[
E(:)

s

]
= λ1V1 + λ2V2 + λ3V3 + λ4V4, (8)

where λi’s are unknown scalars. λ4 can be set to 1 due to

the unknown scale factor. The ‘E’ part of the solution is

E = λ1V1(1 : 9)+λ2V2(1 : 9)+λ3V3(1 : 9)+V4(1 : 9),

where Vi(1 : 9) denote the first 9 elements of Vi. Now λi’s

can be computed using the solution in [15] by providing the

above subspace vectors for E.

After recovering E and s, the axis is computed as the

left null singular vector of E (since ATE = 0). The sign

ambiguity in axis is resolved by pointing it away from the

camera. The translation orthogonal to axis, tA⊥ , can be ob-

tained as s × A. Four solutions for R are recovered from E
as in [15]. The correct solution is obtained after recovering

the layer thicknesses and constraining them to be positive.

Interestingly, the axis estimation is similar to the center of

distortion estimation for central cameras in [7] and our 8pt

algorithm can be applied.

3.2. Simulations

We present simulations for estimating the axis with

Gaussian noise (variance σ2 pixels) in feature points for
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Figure 2. (Left) Single layer (Case 1) and two layer (Case 2, µ2 = µ0) configurations. (Right) Comparison of 11pt algorithm, 8pt algorithm

and using all points in a least squares fashion for estimation of axis, rotation and tA⊥ using coplanarity constraints.

Case 1 and Case 2, shown in Figure 2. We assume a camera

with FOV of 45◦ and resolution 10002 pixels. The scene is

set by choosing d0 = 300 units, d1 = 450 units, µ1 = 1.5
and µ2 = 1. We perform 100 trials for each noise setting,

and plot the average error in axis, rotation and tA⊥ in Fig-

ure 2. For each trial, the axis is randomly generated in a

cone of half-angle 45◦ around the camera’s optical axis.

100 3D points are randomly generated along with R and

t so that they lie within [d0, 2d0] after the last layer. For

each trial, RANSAC-framework is employed for both 11pt

and 8pt algorithms using 200 iterations to choose the best

solution using the coplanarity error. Rotation error is de-

fined as the minimum angle of rotation required to go from

the estimated rotation to the true rotation. Similarly, axis

error is defined as the angle between the estimated and the

true axis. The translation error is computed as the norm of

the translation error vector and is normalized using the cor-

responding layer thickness. Notice that when v0 ‖ n, the

coplanarity constraint cannot be used. Thus, rays having

small angle with axis are unreliable. As expected, the 8pt

algorithm performs significantly better than the 11pt algo-

rithm as well as using all points in a least squares fashion.

4. Recovery of Layer Thicknesses

We first assume known refractive indices. Section 3.1

showed how to compute the axis A, rotation R and trans-

lation tA⊥ orthogonal to the axis. When µi’s are known,

the ray directions for the entire light-path v0(i), . . . , vn(i)
can be pre-computed using the estimated A. The remaining

unknowns are the layer thickness di’s and the translation tA
along the axis, which can be computed linearly as described

below.

Coordinate Transformations: We first apply the com-

puted R and tA⊥ to the 3D points P. Let Pc = RP + tA⊥ .

With known axis, the analysis can be done in 2D on the

plane of refraction (POR) itself as shown in Figure 1. Let

tA = αA, where α is the unknown translation magnitude

along the axis. Let [z2, z1] denote an orthogonal coordi-

nate system on the POR. We choose z1 along the axis. For

a given camera ray v0, let z2 = z1 × (z1 × v0) be the or-

thogonal direction. The projection of Pc on POR is given

by u = [ux, uy], where ux = zT2 Pc and uy = zT1 Pc. Simi-

larly, the direction vector vi of each ray on the light-path of

v0 can be represented by a 2D vector vpi on POR, whose

components are given by zT2 vi and zT1 vi. Let ci = vpT
i z1

and zp = [0; 1] be a unit 2D vector.

4.1. Linear System for n Layers

For each correspondence, the FRC for n layer system on

its plane of refraction is given by

vpn × (u + αzp − qn) = 0. (9)

This is because the last refracted ray vpn should be paral-

lel to the line joining the transformed 3D point u + αzp
and the refraction point qn on the last layer. qn =∑n−1

i=0
−divpi/ci. Substituting, we get

vpn ×
[

vp
0

c0
. . .

vp
n−1

c
n−1

zp

]



d0
...

dn−1

α


 = −vpn × u.

Thus, each correspondence gives one linear equation in di’s
and α. By stacking K > n correspondences, the resulting

linear system can be solved to obtain di’s and α for n layers.

After estimating α, the translation t is given by tA⊥ + αA.

However, if µi = µn for any i, vpi ‖ vpn and di cannot be

estimated. In addition, if µi = µj , only the combined layer

thickness di + dj can be estimated, since the correspond-

ing columns in the linear system become equal. Now we

analyze some special cases.

Case 1 (Single Refraction): For single layer, we have

two unknowns d0 and α and the FRC is given by

vp
1
×

[
vp

0
/c0 zp

]
[

d0
α

]

= −vp
1
× u. (10)

Using K ≥ 2 correspondences, a least squares solution can

be obtained.

Case 2 (Two Refractions) µ0 = µ2: This is a common

scenario when looking through a refractive medium such as
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Figure 3. Rotation, translation and reprojection error using our algorithm versus using a central approximation (CA) for Case 1 and Case

2. The right most plot shows the estimated tz for Case 2 over all 100 trials for σ = 1 pixel. CA estimates the object to be closer to the

camera.

a thick glass slab. Here d0, d1 and α are unknowns. Since

µ0 = µ2, vp2 ‖ vp0 and the FRC reduces to

vp
0
×

[
vp

1
/c1 zp

]
[

d1
α

]

= −vp
0
× u. (11)

Thus, we can only estimate the thickness d1 of the medium,

but not its distance d0. This is consistent with the analy-

sis shown in [21]. In Section 5, we show that although d0
cannot be estimated, the projection of the 3D point on the

image plane can be computed for non-linear refinement.

Case 3 (Two Refractions) µ0 6= µ2: Now v2 and v0 are

not parallel and the FRC is given by

vp
2
×

[
vp

0
/c0 vp

1
/c1 zp

]





d0
d1
α



 = −vp
2
× u. (12)

Thus, we can estimate the distance d0 as well.

5. Non-Linear Refinement

Till now we described an initial solution for estimating

the calibration and pose parameters. We now show how to

perform non-linear refinement of calibration and pose pa-

rameters.

Analytical Forward Projection (AFP): Given a calibrated

central or non-central camera, the AFP describes an analyti-

cal method to compute the projection (or the corresponding

camera ray) of a known 3D point. AFP can be used to min-

imize the image reprojection error. For Case 1, AFP is a

4th degree equation [5]. We derive the AFP equation for

two refractions and show that it is a 4th degree equation for

Case 2 and a 12th degree equation for Case 3. The analysis

can be done on POR.

Case 2: Assume given calibration parameters d0, d1, µ1

and the coordinates u = [ux, uy] of a known 3D point on

POR. The unknown camera ray vp0 can be parameterized

as [x, d0]. Since µ2 = µ0, vp2 ‖ vp0. On POR, the normal

np = [0;−1]. The AFP equation is given by

vp0 × (u − q2) = 0. (13)

We have vp1 = 1

µ1

vp0 + b1np. From (3),

b1 = (d0 −
√
d20 − (1− µ2

1)(x
2 + d20))/µ1. (14)

The refraction point q2 = [x, d0]− d1vp1/c1. Substituting

all these terms in (13), we get

(d20µ
2
1+µ2

1x
2−x2)(d0u

x+d1x−uyx)2 = (d0d1x)
2. (15)

Similar to Case 1, we obtain a 4th degree equation in x. This

gives four solutions for x and the correct solution is found

by checking Snell’s law for each solution. After obtaining

x, the camera ray is obtained as xz2 + d0z1 using which

the image projection p̂ can be computed via internal camera

calibration matrix. In Section 4, we showed that d0 cannot

be estimated for Case 2. The reader might wonder how AFP

equation can then be solved. The key idea is that the camera

ray can be computed by using any value of d0. For example,

let d
′

0 = λd0 for λ > 0. Then the solution x
′

= λx. Thus,

the camera ray remains the same. For Case 3, given cali-

bration parameters d0, d1, µ1, µ2 and the known 3D point,

a 12th degree AFP equation can be derived similarly1.

Iterative Refinement: Let xc denote all calibration pa-

rameters. Given an initial estimate of xc and pose, let

p̂(i) = AFP(xc, RP(i) + t) be the image projection of

P(i) computed by solving the AFP equation. The repro-

jection error is defined as the root mean square (RMS) error

J =
√

1

K

∑K
i=1

(p(i)− p̂(i))2. We use lsqnonlin in

Matlab to refine xc and pose [R, t] by minimizing J .

5.1. Simulations

Now we show simulations for complete calibration and

pose estimation using the same settings as in Section 3.2.

The 8pt algorithm is used since it works better. In the

RANSAC framework, after estimating the axis, the best set

of 8 points are used to compute α and di’s in a least square

fashion as described in Section 4. Since there are 4 solu-

tions for R from E matrix, we get 4 solutions for α and di’s.

The correct solution is found by enforcing α >
∑

di and

di > 0 ∀ i. The obtained initial solution is refined by min-

imizing the reprojection error using the AFP. We also com-

pute the pose obtained using a central (perspective) approxi-

mation from the given 2D-3D correspondences (referred by

1See supplementary materials.
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using 8pt algorithm after non-linear refinement.

Figure 5. (Left) Setup. (Right) Photo captured by looking through

a water tank. Projected 3D points are overlayed by applying pose

estimated using CA (green) and our algorithm (red).

CA). Figure 3 and 4 show error plots for pose and calibra-

tion parameters and the final reprojection error for different

noise levels, averaged over 100 trials. These plots show that

correct calibration and pose parameters can be obtained us-

ing our algorithm. Notice the large translation and repro-

jection error, and smaller estimated tz when using a central

approximation (CA) in Figure 3. This is expected, because

when looking through a denser refractive medium, objects

appear closer to the camera. Note that the error due to noise

in CA is insignificant compared to the error due to incorrect

modeling.

6. Real Experiments

We show real results using a water tank of dimensions

508 × 260 × 300 mm3. We use a Canon Rebel XT cam-

era having resolution of 3456× 2304 pixels with a 18− 55
mm zoom lens. The camera was internally calibrated of-

fline. Figure 5 shows a photo of a scene consisting of three

checkerboards, captured by looking through the water tank

(facing 260 mm side of tank). In order to obtain ground

truth, we took another photo in air, using which the extrinsic

of checkerboards were computed. The resulting 3D points

in the coordinate system of left checkerboard are shown

in Figure 6. We detect corners in the captured photo and

run our algorithm (Case 2) to estimate the calibration and

pose parameters. Figure 6 shows the estimated rotation and

translation parameters, along with the final reprojection er-

ror J . The estimated thickness of the tank using our algo-

rithm was 255.69 mm, resulting in a relative error of 1.66%.

Notice the large error in tz and large J in central approxima-

tion, also evident from projected points in Figure 5. Inter-

estingly, the central approximation can recover the rotation

well enough.

6.1. Planar Calibration Grid

We now show that calibration can also be done using a

single planar grid, which is useful in practice. We describe

an 8pt algorithm as follows. Without loss of generality, as-

sume the plane is aligned with xy plane (Pz(i) = 0). Sub-

stituting in the coplanarity equation (6), the columns 7, 8,

9 of B matrix reduce to zero. Let B′ be the reduced 8 × 9
matrix, whose rank is 8. Thus, we can directly estimate the

first two columns of the E matrix and s by SVD based so-

lution using 8 correspondences. The last column of E is

recovered using Demazure constraints [4] and det(E) = 0
constraint.

Let E =




e1 e4 x
e2 e5 y
e3 e6 z


, where ei’s are estimated as

above and x, y, z are unknown. Setting det(E) = 0
gives a linear equation using which x can be obtained as

x = ((e1e6 − e3e4)y + (e2e4 − e1e5)z)/(e2e6 − e3e5).
The Demazure constraints provide three cubic equations

and six quadratic equations in unknowns, from which any

two quadratic equations can be chosen. Substituting x re-

sults in two quadratic equations in y and z, which can be

solved to obtain a 4th degree equation in z. In general, there

are two real solutions which differ in sign. Thus, we obtain

a pair of E matrices which differ in sign of their last column.

Each pair of obtained rotation matrices also have the same

property. The correct rotation matrix is chosen by checking

for the determinant value of one2.

Figure 7 shows simulation results on estimating calibra-

tion and pose parameters for Case 1 and Case 2 using a

planar grid. Again, note that a central approximation com-

pletely fails. For real data shown in Figure 5, we estimated

the calibration parameters using only the left checkerboard

as shown in Figure 6. Thus, we see that calibration can also

be performed using a single planar grid.

6.2. Unknown Refractive Indices

Due to lack of space, we only consider Case 1. We have

three unknowns d0, µ1 and α. When µ′

is are unknown,

ray directions cannot be pre-computed and FRC needs to

be written in terms of camera rays as follows

(a1vp
0
+ b1z1)× (u + αzp + d0vp

0
/c0) = 0. (16)

Let vp0 = [vx; vy]. After substituting a1 and b1 and remov-

ing the square root term in b1, we get

(d0v
x
− vyux)(γ + (vy)2 − 1) = (vxvy(α− d0 − uy))2, (17)

where γ = µ2
1. Let [EQi]

3
i=1 be the 3 equations for 3 cor-

respondences. Using EQ1, γ can be obtained as a func-

tion of d0 and α. Substituting γ in EQ2 and EQ3 makes

2The determinant of incorrect rotation matrices equals −1, correspond-

ing to a reflection.
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Figure 6. (Left) 3D points in the left checkerboard coordinate system. (Right) Estimates of pose and water-tank thickness d1, and the final

reprojection error J for real data shown in Figure 5 using central approximation (CA) and our algorithm. GT denotes ground-truth and N
denotes the number of 2D-3D correspondences used.
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Figure 7. Errors in axis, rotation, translation and layer thickness using a planar calibration grid for different noise values, averaged over

100 trials. Rotation and translation errors using a central approximation (CA) are also shown.

them cubic in d0 and quadratic in α. After eliminating α2

between EQ2 and EQ3, α is obtained as a cubic function

of d0, which when substituted back into EQ3 results in a

6th degree equation in one unknown d0. Solving it results

in 6 solutions. The correct solution is found by enforcing

d0 > 0, α > d0 and µ1 > 0. Similarly, Case 2 also re-

sults in a 6th degree equation3. However, Case 3 proved too

difficult to obtain an analytical equation. Thus, multi-layer

systems require good initial guess when µi’s are unknown.

Figure 6 shows the pose and calibration estimates for real

data (Figure 5) assuming unknown µ1 for water, which was

recovered as 1.296 (relative error 2.55%).

7. Analysis

Field-of-View (FOV): Small FOV results in ambiguity be-

tween α and layer thicknesses as analyzed below using

small angle approximation sin θ ∼ tan θ ∼ θ. For small

angles, θi ∼ θ0/µi, where θ0 is the angle between the cam-

era ray and the axis4. Rewriting the FRC (9) on the POR

using angles,

tan θn = (ux −
∑

di tan θi)/(u
y + α−

∑
di). (18)

θ0(

χ︷ ︸︸ ︷
α+ µn

∑ di
µi

−
∑

di) = −uyθ0 + uxµn. (19)

Thus, even when µi’s are known, the only quantity that can

be estimated is χ, which is a combination of α and di’s.

This also implies that even when the depth of the calibra-

tion object (and hence α) is known as in [25], individual

3Supplementary materials provide details for Case 1 and Case 2.
4Assuming small angle between camera’s optical axis and normal n.

layer thickness cannot be obtained for small FOV. In Fig-

ure 5, if we perform calibration using the center checker-

board only, the rotation error is within 0.5◦ whereas the tank

thickness d1 is estimated to be 550.38 mm (error of 290.38
mm), along with 70.45 mm error in α. However, the error

in corresponding quantity χ = α+d1(
1

µ1

−1) from the true

value is only 1.59 mm. A central approximation in this case

also gives a low reprojection error with similar translation

error.

Multi-Layer Refractions: Non-central cameras can be

well modeled using central approximation when the locus

of viewpoints is small (e.g. catadioptric camera with small

mirror compared to scene depths). For multi-layer refrac-

tions, a natural question then arises whether they can be

modeled by simpler single/two-layer models. This also be-

comes important when multi-layer modeling becomes chal-

lenging due to similar or unknown refractive indices. We

analyze if Case 3 (air-glass-water) can be approximated by

Case 1 (air-medium). We perform simulation as in Sec-

tion 3.2 using µ1 = 1.5, µ2 = 1.33, d0 = 300 units and

d1 = 450 units. We add different amount of noise in 2D

features and perform 100 trials for each. For each trial, we

apply central approximation, single layer (SL) approxima-

tion using µSL
1 = 0.5(µ1 + µ2) = 1.415, and the correct

two-layer model to estimate the pose and calibration param-

eters. Figure 8 shows the average error plots. Notice that

with no noise, both SL and CA approximations give non-

zero errors while the correct model gives zero error. How-

ever, as noise is increased, SL approximation gives simi-

lar pose, axis and reprojection errors compared to the true

model. As expected, a central approximation is significantly

worse than SL approximation. In general, with large noise
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Figure 8. As noise increases, a two layer refraction system (Case 3) can be well-approximated using a single layer system (Case 1), but not

using a central approximation.

we expect multi-layer refractions to be modeled well by ei-

ther Case 1 or Case 2 depending on µn 6= µ0 or µn = µ0

respectively.

8. Conclusions

We have analyzed the geometry of a perspective camera

imaging through multiple flat refractive layers. We devel-

oped a theory for calibration and derived forward projec-

tion equations, which can be directly used in applications

such as 3D reconstruction [1]. We presented a comprehen-

sive analysis under unknown layer distances and orienta-

tion, and known/unknown refractive indices. Since calibra-

tion can be done using a single planar grid, the proposed

algorithms are useful in practical scenarios such as under-

water imaging. We showed that multi-layer systems may be

well-approximated by simpler single layer systems. Multi-

ple planar grids can be used to increase the calibration accu-

racy similar to calibration of perspective cameras. Our pro-

posed 8-point algorithm for axis computation can be used

for other axial setups such as catadioptric cameras, as well

as to compute the distortion center for fish-eye cameras [7].

Developing a minimal solution for calibrating flat refractive

geometry remains an interesting future work.
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[9] J. Höhle. Reconstruction of the underwater object. Pho-

togrammetric Engineering, pages 948–954, 1971. 1

[10] R. Kotowski. Phototriangulation in multi-media photogram-

metry. Int’l Archives of Photogrammetry and Remote Sens-

ing, XXVII, 1988. 2

[11] H. Li, R. Hartley, and J. Kim. A linear approach to mo-

tion estimation using generalized camera models. In CVPR,

2008. 2

[12] R. Li, H. Li, W. Zou, R. G. Smith, and T. A. Curran. Quanti-

tative photogrammetric analysis of digital underwater video

imagery. IEEE J. Oceanic Eng., 2:364–375, 1997. 2

[13] H.-G. Maas. New developments in multimedia photogram-

metry. Optical 3D Measurement Techniques, III, 1995. 2

[14] N. Morris and K. Kutulakos. Dynamic refraction stereo. In

ICCV, volume 2, pages 1573–1580, 2005. 2

[15] D. Nistér. An efficient solution to the five-point relative pose

problem. PAMI, 26(6):756–770, June 2004. 1, 3

[16] R. Pless. Using many cameras as one. In CVPR, pages 587–

594, 2003. 2

[17] S. Ramalingam, P. Sturm, and S. K. Lodha. Theory and cal-

ibration algorithms for axial cameras. In ACCV, 2006. 2

[18] K. Rinner. Problems of two-medium photogrammetry. Pho-

togrammetric Engineering, 35(3):275–282, 1969. 1

[19] M. Shimizu and M. Okutomi. Calibration and rectification

for reflection stereo. In CVPR, pages 1–8, June 2008. 2

[20] M. Shortis, E. Harvey, and J. Seager. A review of the status

and trends in underwater videometric measurement. In SPIE

Conf. 6491, Videometrics IX, Jan. 2007. 1

[21] E. Steger and K. Kutulakos. A theory of refractive and specu-

lar 3D shape by light-path triangulation. IJCV, 76(1):13–29,

2008. 2, 5

[22] P. Sturm and S. Ramalingam. A generic concept for camera

calibration. In ECCV, 2004. 2

[23] J.-P. Tardif, P. Sturm, M. Trudeau, and S. Roy. Calibra-

tion of cameras with radially symmetric distortion. PAMI,

31(9):1552–1566, 2009. 1, 2

[24] S. Thirthala and M. Pollefeys. Multi-view geometry of 1D

radial cameras and its application to omnidirectional camera

calibration. In ICCV, volume 2, pages 1539–1546, 2005. 2

[25] T. Treibitz, Y. Y. Schechner, and H. Singh. Flat refractive

geometry. In CVPR, 2008. 1, 2, 7


