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For refraction between ith and (i+ 1)th layer, we use the following vector form as shown in the paper

vi+1 = ai+1vi + bi+1n, (1)

where ai+1 = µi/µi+1 and

bi+1 =
−µivTi n −

√
µ2
i (vTi n)2 − (µ2

i − µ2
i+1)vTi vi

µi+1
. (2)

This equation also ensures that vTi+1vi+1 = vT
i vi. In addition, since Snell’s law only depends on the ratio of the refractive

indices, we assume µ0 = 1 without loss of generality.

1. Unknown Refractive Indices
In this section, we describe in detail the analytical solutions to compute the layer thicknesses and translation along the axis

when refractive indices are unknown. As shown in the paper, the axis can be computed independently of the layer thicknesses
and refractive indices. We assume that axis A, rotation R and translation orthogonal to the axis, t⊥A, has been computed as
described in Section 3 of the paper. Our goal is to compute the translation tA along the axis, layer thicknesses and refractive
indices, using the given 2D-3D correspondences. Let tA = αA, where α is the unknown translation magnitude along the
axis.

We first apply the computed R and tA⊥ to the 3D points P. Let Pc = RP+ tA⊥ . The plane of refraction is obtained by the
estimated axis A and the given camera ray v0. Let [z2, z1] denote an orthogonal coordinate system on the plane of refraction
(POR). We choose z1 along the axis. For a given camera ray v0, let z2 = z1 × (z1 × v0) be the orthogonal direction.

The projection of Pc on POR is given by u = [ux, uy], where ux = zT2 Pc and uy = zT1 Pc. Similarly, each ray vi on
the light-path of v0 can be represented by a 2D vector vpi on POR, whose components are given by zT2 vi and zT1 vi. Let
zp = [0; 1] be a unit 2D vector and ci = vpT

i zp. On the plane of refraction, the normal n of the refracting layers is given by
n = [0;−1].

1.1. Case 1: Single Refraction

In this case, we have three unknowns d0, µ1 and α. When µ′
is are unknown, ray directions cannot be pre-computed and

flat refraction constraint needs to be written in terms of camera rays. For Case 1, the flat refraction constraint is given by

0 = vp1 × (u + αzp − q1) (3)
= vp1 × (u + αzp + d0vp0/c0). (4)

vp1 is given by

vp1 = a1vp0 + b1n, (5)
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where a1 = 1/µ1. Since the camera ray vp0 is known, we can normalize it. Let vp0 = [vx; vy]. From (2),

b1 =
vy −

√
µ1

2 + (vy)2 − 1

µ1
(6)

Using a1 and b1, vp1 can be obtained. Substituting vp1 and vp0 in the FRC equation (4)

(d0v
x − vyux)

√
µ2
1 + (vy)2 − 1 + vxvy(α− d0 − uy) = 0 (7)

Removing the square root term, we get

(d0v
x − vyux)(γ + (vy)2 − 1) = (vxvy(α− d0 − uy))2, (8)

where γ = µ2
1. γ can be obtained as a function of d0 and α.

γ =
(vxvy(α− d0 − uy))2

(d0vx − vyux)
− (vy)2 + 1 (9)

Let [EQi]
3
i=1 be the 3 equations for 3 correspondences. Using EQ1, γ can be obtained as a function of d0 and α as above.

Substituting γ in EQ2 and EQ3 makes them cubic in d0 and quadratic in α. We get the following form for EQ2 and EQ3

EQ2 : k11α
2(k12d

2
0 + k13d0 + k14) + k15α(k16d

3
0 + k17d

2
0 + k18d0 + k19) + (k31d

3
0 + k32d

2
0 + k33d0 + k34) = 0 (10)

EQ3 : k21α
2(k22d

2
0 + k23d0 + k24) + k25α(k26d

3
0 + k27d

2
0 + k28d0 + k29) + (k41d

3
0 + k42d

2
0 + k43d0 + k44) = 0 (11)

where kij depend on known quantities. α2 can be eliminated between EQ2 and EQ3 by

EQ2 = k21k22EQ2 − k11k12EQ3. (12)

The resulting EQ2 is linear in α and cubic in d0, using which α can be obtained as a cubic function of d0. Substituting α
in EQ3 and simplifying results in a 6th degree equation in single unknown d0. Matlab code is provided which gives this
equation.

1.2. Case 2: Two Refractions, µ2 = µ0

In this case, we have four unknowns d0, d1, µ1 and α. However, as shown in the paper, d0 cannot be estimated. The
resulting FRC turns out to be independent of d0. For Case 2, the flat refraction constraint is given by

0 = vp0 × (u + αzp − q2) (13)

since vp2 is parallel to vp0. The refraction point q2 is given by

q2 = q1 − d1vp1/(vpT
1 n). (14)

vp1 is given by

vp1 = a1vp0 + b1n, (15)

where a1 = 1/µ1. Since the camera ray vp0 is known, we can normalize it. Let vp0 = [vx; vy]. From (2),

b1 =
vy −

√
µ1

2 + (vy)2 − 1

µ1
(16)

Using a1 and b1, vp1 and q2 can be obtained. Substituting vp1 and vp0 in the FRC equation (13)

(d1v
x − αvx + vyux − vxuy)

√
µ2
1 + (vy)2 − 1 + d1v

xvy = 0 (17)



Removing the square root term, we get

(d1v
x − αvx + vyux − vxuy)2(γ + (vy)2 − 1) = (d1v

xvy)2 (18)

where γ = µ2
1. Once again, γ can be obtained as a function of d1 and α.

γ =
(d1v

xvy)2

(d1vx − αvx + vyux − vxuy)2
− (vy)2 + 1 (19)

Similar to Case 1, let [EQi]
3
i=1 be the 3 equations for 3 correspondences. Using EQ1, γ can be obtained as a function of

d1 and α as above. Substituting γ in EQ2 and EQ3 makes them cubic in d1 and fourth degree in α. We found it difficult
to solve in Matlab, due to large number of terms. Therefore, we used an automatic generator of Grobner basis solver [4] to
obtain the final equation. It results in a 6th degree equation.

Note that if we don’t make the substitution of γ = µ2
1, then the automatic solver will result a 12th degree equation instead

of a 6th degree equation. Thus, it is important to do correct parametrization by carefully analyzing the equations.

1.3. Case 3: Two Refractions, µ2 ̸= µ0

In this case, we have five unknowns d0, d1, µ1, µ2 and α. However, this case is extremely difficult to solve and we were
unable to get an analytical equation. As shown, in this case the FRC will result in an equation in above five unknowns, with
fourth degree terms of each unknown. Thus, it is clear that more than two layers or multi-layer systems are quite difficult to
solve for analytically and require a good initial guess for non-linear refinement, when refractive indices are unknown.

For Case 3, the flat refraction constraint is given by

0 = vp2 × (u + αzp − q2) (20)

since vp2 is not parallel to vp0. vp2 is given by

vp2 = a2vp1 + b2n = a2a1vp0 + (a2b1 + b2)n (21)

where a2 = µ1/µ2 and

b2 = −

√
µ1

2

(
vy

µ1
− vy−

√
µ1

2+vy2−1

µ1

)2

− µ1
2 + µ2

2 − µ1

(
vy

µ1
− vy−

√
µ1

2+vy2−1

µ1

)
µ2

(22)

Using a1, b1, a2, b2, we can obtain vp2 and q2. Substituting in FRC equation (20), we get

k1
√

D1 + k2
√
D1D2 + k3

√
D2 = 0, (23)

where

k1 = vxvy(d0 − α+ d1 − uy) (24)
k2 = uxvy − d0v

x (25)
k3 = −d1v

xvy (26)
D1 = µ2

1 + (vy)2 − 1 (27)
D2 = µ2

2 + (vy)2 − 1 (28)
(29)

Removing the square root terms, we get

(k21D1 + k23D2 − k22D1D2)
2 − 4k21k

2
3D1D2 = 0 (30)

which is a fourth degree equation in five unknowns d0, d1, µ1 and α. The above equation has up to fourth degree terms
of each of the unknowns d0, d1, µ1 and α. We were not able to get a polynomial equation in a single unknown using 5
correspondences.



2. Calibration using a Planar Grid
Now we describe in detail the 8pt algorithm for calibration using a planar grid (Section 6.1 of the paper). Starting from

the coplanarity constraints we have

0 = vT0 (A × (RP + t)) = vT
0 EP + vT0 s, (31)

where E = [A]×R and s = A × t. Stacking equations for 8 correspondences, we get a linear system (P(1)T ⊗ v0(1)T ) v0(1)T
...

...
(P(8)T ⊗ v0(8)T ) v0(8)T


︸ ︷︷ ︸

B

[
E(:)

s

]
= 0, (32)

where B is a 8× 12 matrix.
For plane based calibration, assume that the plane is aligned with xy plane (Pz(i) = 0). Substituting in above, the columns

7, 8, 9 of B matrix reduce to zero. Let B′ be the reduced 8 × 9 matrix, whose rank is 8. Thus, we can directly estimate the
first two columns of the E matrix and s by SVD based solution using 8 correspondences.

Let E =

 e1 e4 x
e2 e5 y
e3 e6 z

, where ei’s are estimated as above and x, y, z are unknown. The last column of E is recovered

using Demazure constraints [2, 1] and det(E) = 0 constraint.
The constraint det(E) = 0 gives

xe2e6 − xe3e5 − ye1e6 + ye3e4 + ze1e5 − ze2e4 = 0. (33)

Using this, x can be obtained in terms of y and z as

x = (e1e6y − e3e4y − e1e5z + e2e4z)/(e2e6 − e3e5) (34)

Let

K = e21 + e22 + e23 + e24 + e25 + e26 + x2 + y2 + z2 (35)

The Demazure constraints [2, 1] give following nine equations

x
(
2 e1

2 + 2 e4
2 + 2x2

)
− xK + y (2 e1 e2 + 2 e4 e5 + 2x y) + z (2 e1 e3 + 2 e4 e6 + 2x z) = 0 (36)

y
(
2 e2

2 + 2 e5
2 + 2 y2

)
− y K + x (2 e1 e2 + 2 e4 e5 + 2x y) + z (2 e2 e3 + 2 e5 e6 + 2 y z) = 0 (37)

z
(
2 e3

2 + 2 e6
2 + 2 z2

)
− z K + x (2 e1 e3 + 2 e4 e6 + 2x z) + y (2 e2 e3 + 2 e5 e6 + 2 y z) = 0 (38)

e1
(
2 e1

2 + 2 e4
2 + 2x2

)
− e1K + e2 (2 e1 e2 + 2 e4 e5 + 2x y) + e3 (2 e1 e3 + 2 e4 e6 + 2x z) = 0 (39)

e4
(
2 e1

2 + 2 e4
2 + 2x2

)
− e4 K + e5 (2 e1 e2 + 2 e4 e5 + 2x y) + e6 (2 e1 e3 + 2 e4 e6 + 2x z) = 0 (40)

e2
(
2 e2

2 + 2 e5
2 + 2 y2

)
− e2 K + e1 (2 e1 e2 + 2 e4 e5 + 2x y) + e3 (2 e2 e3 + 2 e5 e6 + 2 y z) = 0 (41)

e5
(
2 e2

2 + 2 e5
2 + 2 y2

)
− e5 K + e4 (2 e1 e2 + 2 e4 e5 + 2x y) + e6 (2 e2 e3 + 2 e5 e6 + 2 y z) = 0 (42)

e3
(
2 e3

2 + 2 e6
2 + 2 z2

)
− e3 K + e1 (2 e1 e3 + 2 e4 e6 + 2x z) + e2 (2 e2 e3 + 2 e5 e6 + 2 y z) = 0 (43)

e6
(
2 e3

2 + 2 e6
2 + 2 z2

)
− e6 K + e4 (2 e1 e3 + 2 e4 e6 + 2x z) + e5 (2 e2 e3 + 2 e5 e6 + 2 y z) = 0 (44)

Note that the first three equations have cubic terms of x, y, z, while the next six equations have quadratic terms. We can
choose any two of these six quadratic equations. Lets choose the first two of the six quadratic equations and denote them as
EQ2 and EQ3. Substituting x from above we get two equations of the following form

EQ2 : k11y
2 + k12yz + k13z

2 + k14 = 0 (45)
EQ3 : k21y

2 + k22yz + k23z
2 + k24 = 0, (46)



where kij depend on ei’s and are known coefficients. We can eliminate y2 from the above two equations to get y in terms of
z

y =
k21(k13z

2 + k14)− k11(k23z
2 + k24)

k11k22z − k12k21z
(47)

Substituting y back into EQ3 gives a fourth degree equation in z

g1z
4 + g2z

2 + g3 = 0, (48)

where

g1 = k11(k
2
11k

2
23 − k11k12k22k23 − 2k11k13k21k23 + k11k13k

2
22 + k212k21k23 − k12k13k21k22 + k213k

2
21)

g2 = k11(k11k14k
2
22 + 2k13k14k

2
21 + k212k21k24 + 2k211k23k24 − k11k12k22k24 − (49)

2k11k13k21k24 − 2k11k14k21k23 − k12k14k21k22) (50)
g3 = k11(k11k24 − k14k21)

2 (51)

Note that since the above equation has only z4 and z2 terms, we can substitute γ = z2 and get a quadratic equation in γ. In
general, there are two real solutions and two imaginary solutions, where the real solutions differ in sign.

3. Derivation of Forward Projection Equation for Case 1, Case 2 and Case 3

In this section, we present the details of the derivation of Analytical Forward Projection (AFP) Equation for Case 1, Case
2 and Case 3. Matlab code to derive the equations for all three cases is included in the supplementary materials.

As explained in the paper, given a calibrated central or non-central camera, the AFP describes an analytical method to
compute the projection (or the corresponding camera ray) of a known 3D point. AFP can be used to minimize the image
reprojection error. For Case 1, AFP is a 4th degree equation [3]. We derive the AFP equation for two refractions and show
that it is a 4th degree equation for Case 2 and a 12th degree equation for Case 3. The analysis can be done on the plane of
refraction.

3.1. Coordinate Transformations

We use the following coordinate transformation to do the analysis on the plane of refraction itself. To derive the AFP
equation, we are given the calibration parameters axis A, layer thicknesses di’s and refractive indices µi’s, and the known
3D point P. The goal is to find the 2D projection (or the corresponding camera ray vp0) of the 3D point P . The plane of
refraction (POR) can be defined by the 3D point P and the axis A, with the camera at the origin of the coordinate system.

Let [z2, z1] denote an orthogonal coordinate system on the POR. We choose z1 along the axis. Let z2 = z1 × (z1 × P ) be
the orthogonal direction. The projection of P on POR is given by u = [ux, uy], where ux = zT2 P and uy = zT1 P. Note that
z1 and z2 are 3× 1 vectors that define the coordinate system on POR.

The unknown camera ray on the plane of refraction vp0 can be parameterized as [x, d0], where x is unknown. On the
plane of refraction, the normal n of the refracting layers is given by n = [0;−1].

3.2. Case 1: Single Refraction

Figure 1 depicts Case 1. Let q1 = [x, d0] be the point on the refractive medium where refraction happens. The forward
projection equation is given by

vp1 × (u − q1) = 0, (52)

where vp1 is the refracted ray. This is because vp1 should be parallel to the line joining u and q1. vp1 is given by

vp1 = a1vp0 + b1n (53)

where a1 = 1/µ1 and

b1 = (−vpT
0 n −

√
(vpT

0 n)2 − (1− µ2
1)vpT

0 vp0)/(µ1) (54)

= (d0 −
√
d20 − (1− µ2

1)(x
2 + d20))/µ1. (55)



Figure 1. Case 1. The forward projection equation can be derived on the plane of refraction containing the given 3D point P and the axis.

Figure 2. Case 2. Since µ2 = µ0, the final refracted ray vp2 is parallel to camera ray vp0.

Using a1 and b1 we can obtain vp1. Substituting in (52), we get

uyx− d0x− ux
√
d20µ

2 + µ1
2x2 − x2 + x

√
d20µ1

2 + µ1
2x2 − x2 = 0 (56)

Taking square root terms on one side and squaring, the following AFP equation is obtained.

(ux − x)2(d20µ
2
1 + µ2

1x
2 − x2)− (d0x− uyx)2 = 0 (57)

The AFP equation for Case 1 is 4th degree. After solving the AFP equation, we get four solutions. The correct solution is
found by removing imaginary solutions and checking Snell’s law for each real solution. Once x is found, the camera ray is
given by xz2 + d0z1.

3.3. Case 2: Two Refractions µ2 = µ0

Case 2 can be analyzed in a similar manner to Case 1 as shown in Figure 2. In this case, since µ2 = µ0, vp2 will be
parallel to vp0. The forward projection equation is given by

vp0 × (u − q2) = 0, (58)

The refraction point q2 is given by

q2 = q1 − d1vp1/(vpT
1 n) (59)

= [x; d0]− d1vp1/(vpT
1 n), (60)

where vp1 is given as in (53). After substituting for vp1 and q2 using a1 and b1 in (58), we get

(d0u
x + d1x− uyx)

√
d20µ

2
1 + µ2

1x
2 − x2 − d0d1x = 0 (61)



Figure 3. Case 3. Since µ2 ̸= µ0, the final refracted ray vp2 is not parallel to camera ray vp0.

Squaring, we get the AFP equation

(d0u
x + d1x− uyx)2(d20µ

2
1 + µ2

1x
2 − x2) = (d0d1x)

2 (62)

which is a 4th degree equation in x. After solving the AFP equation, we get four solutions. The correct solution is found by
removing imaginary solutions and checking Snell’s law for each real solution. Once x is found, the camera ray is given by
xz2 + d0z1.

3.4. Case 3: Two Refractions µ2 ̸= µ0

Now we consider Case 3 as shown in Figure 3. In this case, since µ2 ̸= µ0, vp2 will not be parallel to vp0. The forward
projection equation is given by

vp2 × (u − q2) = 0, (63)

The refraction point q2 is same as in Case 2. However, the final refracted ray vp2 is given by

vp2 = a2vp1 + b2n (64)
= a2(a1vp0 + b1n) + b2n (65)
= a2a1vp0 + (a2b1 + b2)n. (66)

We have a1 = 1/µ1 and a2 = µ1/µ2. b1 is given as in (55)

b1 = (d0 −
√
d20 − (1− µ2

1)(x
2 + d20))/µ1. (67)

Similarly, b2 is given by

b2 = (−µ1vpT
1 n −

√
µ2
1(vpT

1 n)2 − (µ2
1 − µ2

2)vpT
1 vp1)/(µ2) (68)

= (−µ1vpT
1 n −

√
µ2
1(vpT

1 n)2 − (µ2
1 − µ2

2)vpT
0 vp0)/(µ2) (69)

=

√
(µ1

2 − 1)
(
d0

2 + x2
)
+ d0

2 −
√
(µ1

2 − 1)
(
d0

2 + x2
)
− (µ1

2 − µ2
2)

(
d0

2 + x2
)
+ d0

2

µ2
(70)

Using a1, a2, b1, b2, we can obtain vp2 and q2. Substituting in AFP equation 63, we get

k1
√
D1 + k2

√
D1D2 + k3

√
D2 = 0. (71)



where

k1 = x(d0 + d1 − uy) (72)
k2 = (ux − x) (73)
k3 = −d1x (74)
D1 = d20µ

2
1 + µ2

1x
2 − x2 (75)

D2 = d20µ
2
2 + µ2

2x
2 − x2 (76)

Removing the square root terms, we get

(k21D1 + k23D2 − k22D1D2)
2 − 4k21k

2
3D1D2 = 0. (77)

After substituting for k1, k2, k3, D1 and D2, we get a 12th degree equation in x. After solving the AFP equation, we get
twelve solutions. The correct solution is found by removing imaginary solutions and checking Snell’s law for each real
solution. Once x is found, the camera ray is given by xz2 + d0z1.
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