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Abstract. Thermal cameras measure the temperature of objects based
on radiation emitted in the infrared spectrum. In this work, we propose a
novel shape recovery approach that exploits the properties of heat trans-
port, specifically heat conduction, induced on objects when illuminated
using simple light bulbs. Although heat transport occurs in the entirety of
an object’s volume, we show a surface approximation that enables shape
recovery and empirically analyze its validity for objects with varying
thicknesses. We develop an algorithm that solves a linear system of equa-
tions to estimate the intrinsic shape Laplacian from thermal videos along
with several properties including heat capacity, convection coefficient,
and absorbed heat flux under uncalibrated lighting of arbitrary shapes.
Further, we propose a novel shape from Laplacian objective that aims to
resolve the inherent shape ambiguities by drawing insights from absorbed
heat flux images using two unknown lights sources. Finally, we devise
a coarse-to-fine refinement strategy that faithfully recovers both low-
and high-frequency shape details. We validate our method by showing
accurate reconstructions, to within an error of 1-2mm (object size ≤
13.5 cm), in both simulations and from noisy thermal videos of real-world
objects with complex shapes and material properties including those that
are transparent and translucent to visible light. We believe leveraging heat
transport as a novel cue for vision can enable new imaging capabilities.
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1 Introduction

Estimating the 3D shape of an object from its images is central to computer
vision. Traditional techniques for shape recovery such as photometric stereo [54],
structured light [43] and structure from motion [10] rely on surface reflectance
and often suffer when confronted with dark objects or those transparent to
visible light. However, only a handful of works leverage the emissive properties of
the surface [28,29]. Every object with a temperature above absolute zero emits
electromagnetic radiation and, for objects at room temperature, this primarily
lies in the Long-Wave Infrared Spectrum (LWIR) detectable by thermal cameras.
Further, temperature change within an object is governed by well-known laws of
heat transfer physics related to conduction, convection, and radiation. A useful
but often overlooked aspect of this heat transport is conduction, which is shape-
dependent. This raises a fundamental question: Can we infer an object’s shape
by observing its heat flow?
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Fig. 1: A thermal video of a translucent ob-
ject with heat conduction is used to estimate
absorbed heat flux, heat capacity, convec-
tion coefficient, and Laplace operator ∆s

(shown as geodesic distance obtained from
∆s) without knowledge of shape. The full
shape is then estimated from the Laplace
operator resolving ambiguities.

Recovering shapes in the thermal
spectrum presents numerous advan-
tages over traditional techniques that
operate in the visible spectrum, partic-
ularly in reconstructing objects that
are transparent or translucent to vis-
ible light (Fig. 1). However, model-
ing an object’s appearance in thermal
wavelengths is complex due to its de-
pendence on temperature, emissivity,
and the properties of the surrounding
medium. Accurately modeling thermal
appearance requires considering light
transport, such as reflections, and heat
transport within and around the ob-
ject. Unfortunately, inverting the full
volumetric heat transport for an un-
known scene and lighting is challeng-
ing, given only surface temperature
measurements from a thermal camera.

In this work, we propose a surface approximation to volumetric heat transport
that enables us to faithfully model heat flow across the objects’ extent. This
approximation is accurate to within a few percent of the full model even for
thick objects and we show it can be used to recover several material properties
and surface geometry (Fig. 1). Our approximation modifies the heat conduction
PDE [52] relating it to the object’s shape via a surface Laplace operator ∆.
Interestingly, this results in a PDE that is non-linear to shape but linear with
respect to the unknowns of the Laplace operator. Solving the linear system over
time allows us to recover the Laplace operator and other properties such as
absorbed heat flux, convection coefficient, and scaled heat capacity.

Estimating shape from Laplacian involves ambiguities due to the non-convex
nature of the objective function, which has multiple global minima. Previous
work has demonstrated effective shape recovery only when approximate initial
shape estimates are employed [4]. In this paper, we demonstrate that the space
of ambiguities in shape estimation is locally binary and that the camera ray
constraint restricts the possible isometric deformations. We address this ambiguity
using two uncalibrated light sources, leveraging the novel insight that absorbed
heat flux resembles shading. Our approach is validated by recovering accurate
shapes (avg. 1-2 mm error for object sizes ≤ 13.5 cm) of both simulated and
real-world objects with complex geometries, varying thicknesses, and diverse
visible reflectances using noisy temperature observations from a thermal camera.

In summary, we propose a novel shape-from-X technique using the first
principles of heat conduction, which effectively recovers shapes for diverse visible
reflectances while addressing ambiguities inherent in the shape from the Laplacian
objective, albeit with known emissivity. We believe techniques utilizing thermal
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cameras can have a significant advantage over pure visible light methods due
to passive sensing capabilities with complementary reflectance characteristics.
With cheaper and better thermal cores, inverting the physics of thermal image
formation can unlock new imaging capabilities that hold potential applications
to robotics [45], manufacturing [16] and medical thermography [20].

2 Related Work

We briefly review the utility of thermal imaging in computer vision, the efforts
in recovering shape from intrinsic attributes and relevant approaches in the
physics-based shape-from-X literature.
Thermal imaging in computer vision. Recently, there has been considerable
interest in utilizing the thermal modality to address diverse computer vision
tasks [5, 15, 27, 38, 41, 45, 46, 48, 50, 56]. Moreover, research efforts have delved
into the segmentation [21] and scanning [11, 32] of opaque glass objects in the
thermal spectrum. Leveraging their passive imaging capabilities [51], thermal
cameras have proven valuable for pose estimation [7,22,28,29] and re-identification
[14,35,53]. These cameras have also played a crucial role in material classification
studies [25, 40, 42, 44]. Notably, Dashpute et al. [9] recently employed the heat
equation to deduce the diffusivity and emissivity of objects with flat geometries.
Shape from intrinsic attributes. Intrinsic attributes, such as the Laplace operator,
serve as the fundamental quantity in various physical simulations, including fluid
dynamics, wave propagation, and heat transfer. These attributes facilitate the
computation of geometrical measures such as lengths, areas, and volumes without
requiring the object’s spatial embedding. Our work is aligned with previous
efforts [18, 23] that addressed shape recovery from sound waves, concluding that,
in two dimensions, multiple shapes could produce the same set of harmonics.
Recent works [4, 8] have also explored recovering shapes given the intrinsic
properties of objects but mention that the recovered shape highly depends on
the initialization and the quality of the intrinsic attributes. It is important to
note how our work differentiates on both these fronts, where initializations to
our optimizations are flat planes compared to initial shape estimates in [4] and
our estimate of intrinsic quantities comes from noisy temperature measurements.
Moreover, [4] focuses on style transfer without needing to address non-rigid edge
length preserving deformations by having good initial shape estimates.
Physics-based shape from X. Recovering shape has been of keen interest to the
vision community with methods recovering shape from shading [13], polarization
[24,31], texture [12], specular flow [1] and others. While these methods rely on
inputs from a visible camera, only a handful of works have explored the thermal
regime. Nagase et al. [33] present a method to recover shape from multi-spectral
thermal radiation based on the attenuation of light due to air. Tanaka et al. [49]
show photometric stereo with thermal cameras under steady-state conditions
(takes approx. ten minutes) but don’t use the knowledge of shape-dependent heat
conduction. Additionally, their method depends on calibrated distant lighting. In
contrast, our approach utilizes uncalibrated light sources for heat induction and
uses quicker transient temperature measurements that takes 15 seconds or less.
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3 Background

We introduce the heat transport equation and discuss the discrete Laplace
operator that is necessary to computationally evaluate them.

Table 1: Properties in the heat equation
(Eq. 1) and their dimensions.

Property Description Unit

hc Convection co-efficient W/(m2 ·K)

ρ Density kg/m3

ϵ Emissivity –
β Energy Absorption factor –
ϕq Input heat flux density W/m2

A Surface Area m2

cp Specific heat capacity J/(kg ·K)

σ Stefan-Boltzmann constant W/(m2K4)

T Temperature K

α Thermal diffusivity m2/s

Transient Heat Equation. Heat
transfer in an object can occur due
to three main phenomena, namely,
conduction, convection, and radiation.
While conduction can occur through
the entire solid object, convection,
and radiation are surface phenomena.
Given a domain Ω, we can define
its Laplace operator ∆ that encodes
shape information, and 1∂Ω is an indi-
cator function that is 1 if the volume is
exposed to the surface and 0 otherwise.
Now, the heat transfer equation [3,52]
can be written as:

dT

dt
= α∆T + 1∂Ω

1

ρcpdv

(
σϵA(T 4

surr − T 4) + hcA(Tsurr − T ) + Aβϕq

)
(1)

The first term ∆T represents conduction, and the second term represents the sum
of radiation, convection, and input heat source; other quantities are explained in
Table 1 and a complete derivation is provided in the supplementary.

Discrete Laplace Operator. Evaluating the heat equation computationally
requires discrete approximations of quantities in Eq. 1. Consider the domain Ω
discretized into finite elements N , defined using V vertices and F faces. The
discrete version of the Laplace operator ∆ on the domain Ω is denoted by ∆Ω.
The Laplacian L ∈ R|V |×|V | is a matrix that acts on a function f ∈ R|V | to
compute its second derivative over Ω. This can be expressed of the form,

(Lf)i =
∑

j∈N (i)

wij(fj − fi) (2)

where, wij is the weight between the vertices i and j. Here, the sum is taken
over the neighbors N of vertex i. If the finite elements are made of triangular
mesh elements then the most commonly used weights for wij are cotangent
weights [30,37], defined as

Lij =

wij =
cotαij + cotβij

2
if i ̸= j

−
∑

j∈N (i) wij if i = j
(3)

where αij and βij are the angles opposite to the edge connecting the vertices i
and j. To perform volumetric simulations of heat transport, we use tetrahedral
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Laplacians based on cotangent weights that has a complex dependence with
dihedral angles as mentioned in [2,6]. The discrete Laplace operator is defined as
∆Ω = M−1L where M ∈ R|V |×|V | is a mass matrix [47]. A common choice for
M in the case of triangular meshes is the lumped mass system Ma and a mass
matrix Mv containing volumes in case of tetrahedral mesh elements.

4 Surface Approximation of Volumetric Heat Transfer

A thermal camera only provides temperature measurements of a surface based
on the radiation emitted by it. Since all real-world objects have some thickness,
inverting the heat transport in an unknown volume with unknown material
properties, heated by an uncalibrated source and without interior temperature
measurements is a daunting task. To tackle this, we propose an approximation for
the volumetric heat flow that aids in shape recovery just from surface temperature
measured using thermal cameras.

Discrete heat equation. Consider a temperature field {Tk, k ∈ [0, ...,K]} on
the domain Ω, observed with a sampling period t producing a total number of
observations K. If the scene has a temporally constant surrounding temperature
Tsurr and an input heat flux ϕq is induced across the mesh surface then the heat
equation (Eq. 1) can be discretized and written in the form,

Tk+1 − Tk

t
= α∆ΩTk+1 + 1∂Ω

M−1
v

ρcp

(
σϵMa(T4

surr − T4
k+1)+

hcMa(Tsurr − Tk+1) + βMaϕq

)
(4)

Volumetric heat flow. To illustrate the impact of object thickness on volumetric
heat transport, we conducted tetrahedral heat simulations using cuboidal shapes
of varying thicknesses, as shown in Figure 2 (left). The objects are heated
uniformly at each vertex with a 5mW light source and a 15 second simulated
video is recorded. The thicknesses range from 2mm to 1m, and we compared their
video outputs to simulations with a small thickness of 1mm. The simulations
indicate that beyond a thickness near 1 cm, the difference between the thermal
videos saturates for a wide range of materials (polystyrene, steel, glass, and brick)
with varying thermal conductivity. In other words, the volumetric simulation
does not change the surface temperature on the object appreciably after a certain
thickness.

Surface approximated heat equation. Based on the above empirical evidence,
we approximate the volumetric heat flow as a surface phenomenon assuming that
the object is made of a finite volume with uniform/average thickness δ directly
below it. This implies that the interior volumes are represented by nodes on
the object’s surface. The mass matrix Mv representing this volume can then
be approximated as M̃v = Maδ. This approximation allows us to calculate
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Fig. 2: The plot on the left shows average absolute error (across time) within thermal
videos between tetrahedral simulations of varying thickness (0.001m to 1m) compared to
the video from simulations of least thickness (0.001m). The plots on the right showcase
the percentage error in temperature between true volumetric transport and its surface
approximation with varying shapes and material properties for objects like cuboid,
hemisphere and bunny shown up to a thickness of 20cm.

Laplacians with neighboring volumes using the cotangent approximation for
triangular meshes (Eq. 3), instead of the more complex tetrahedral version. As
we are interested in solving a linear system of equations in Section 5, we further
linearize Eq. 1 using a first-order approximation for the radiation term as [52],

σϵMa(T4
surr − T4) ≈ 4σϵMaT3

surr(Tsurr − T). (5)

Substituting Eq. 5 in Eq. 4 and rearranging the terms we obtain,

δρcp(Tk+1 − Tk)− tαδρcpM̃
−1

v LTk+1 − tβϕq+

thc

(
Tk+1 − Tsurr

)
− 4tσϵ

(
T 4
surr − T 3

surrTk+1

)
= 0. (6)

Here, the quantity M̃
−1

v Ma = 1/δ and the indicator function 1∂Ω has been
dropped since we deal with only surfaces. Convection, radiation, and absorption
are assumed to occur at all finite elements throughout the mesh. We use this
surface approximation (Eq. 6) in our shape recovery and simulation experiments.

Validating surface approximation. We analyze the validity of Eq. 6 in
Figure 2 (right) by calculating the percentage error in forward heat transport
between tetrahedral (volumetric) simulations for varying object thicknesses and
our corresponding approximated surface simulations. The percentage error in the
thermal simulation videos is lower than 5% for thicknesses up to 1 cm and has an
upper bound of 8% even for complex shapes with thicknesses up 20 cm. Common
objects such as cups, bowls, vessels and bottles typically have thicknesses much
less than 1 cm, so our surface approximation is applicable for a diverse range
of real-world objects. In Section 7, we show that this surface approximation is
crucial to recover shapes, using both simulations and experiments with noisy
thermal videos, resulting in average shape errors of less than 2mm for objects of
many shapes, thicknesses and materials.
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5 Estimating Material and Geometric Properties

Optimizing for the shape information directly from the heat equation (Eq. 6)
is non-convex and difficult with several unknown material properties. We now
describe an approach to first estimate the shape-dependent Laplacian information,
and while doing so, obtain several quantities such as absorbed heat flux, convection
coefficient, and scaled heat capacity for objects with arbitrary shapes without the
knowledge of their embedding in space. This is a notable contribution compared
to works like [9] which estimate material properties for planar objects.

Our approach relies on some reasonable assumptions about the object and its
environment. We assume that the object is made of a homogeneous material with
properties such as specific heat cp, density ρ, and thermal diffusivity α constant
throughout the object. The emissivity ϵ of the object is known (they are typically
above 0.9 for a range of painted objects) and is assumed to be independent
of wavelength. The object is in a stable air environment at a known constant
temperature Tsurr with a convection coefficient hc that is constant during the
video capture process.

Minimum number of frames required. After linearizing the surface ap-
proximated heat equation (Eq. 6) in terms of temperature, we aim to provide
theoretical insights into the constraints governing the minimum number of ther-
mal image pairs that would be needed to recover unknown quantities. To start,
the heat equation (6) can be re-written in the form,

E(T) ≡ δρcp(Tk+1 − Tk)− tαδρcpM̃
−1

v LTk+1 − tβϕq+

thc

(
Tk+1 − Tsurr

)
− 4tσϵ

(
T 4
surr − T 3

surrTk+1

)
. (7)

Here, the quantities underlined in orange indicate the unknown coefficients.
Analyzing the number of unknown coefficients

across each term of Eq. 7, the first term provides
a single unknown quantity C ≡ δρcp which is the
heat capacity of the object per unit squared area.
The second term ∆s ≡ αδρcpM̃

−1

v L is a scaled
version of the Laplace operator ∆Ω. If mesh M
had regular grid connectivity then the maximum
valence of the surface is limited to six. Laplacian’s
non-diagonal elements will have non-zero entries
only at the ijth locations where an edge ij exists between the vertex vi and
vj . Further, the rest of the coefficients αδcpM̃

−1

v do not change the number of
coefficients as the lumped mass matrix M̃v contains non-zero entries only along
the diagonal and other quantities are scalar values. Hence, a maximum of six
unknown coefficients are introduced by the second term. Finally, the third and
fourth terms provide two more unknown coefficients, namely, the absorbed heat
flux βϕq and the convection coefficient hc. This results in a total of nine unknown
coefficients per pixel. Evaluating Eq. 7 once, requires a pair of consecutive images
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{k, k+ 1}. Thus, estimating the unknown quantities for every vertex individually
would require at least ten consecutive image (video frame) pairs. We perform
the following global optimization where quantities such as C and hc are assumed
spatially constant.

Optimization procedure. Given a thermal video {Tk, k ∈ [1, ...,K]} and a
2D mask of the object, we create a flat triangular mesh M with V vertices and
F faces within the mask where every pixel pi ∈ {0, ...,H ×W} is associated to
vertices vi ∈ V . The residual of Eq. 7 is used as our objective function to perform
a gradient descent minimization to obtain the unknown quantities. We remove
the reflections and fixed pattern noise from the captured video by subtracting the
first frame, but the system noise characterized by Noise Equivalent Temperature
Difference (NETD) still persists. To address this, we allow the temperature to be
optimized while remaining close to the observed values. This provides a noise-
reduced estimate of temperature values allowing the objective to be minimized
better. The overall cost function can be written as follows,

C,∆s, hc, βϕq, T̂ = argmin
C,hc,∆s,βf,T̂

|E(T̂)|+ λr||T − T̂||2 (8)

here, λr is the weight for the regularization term and is set to 1.0 in our ex-
periments. We use Adam optimizer [26] from Pytorch [36] for performing the
optimization. This optimization estimates Laplace operator ∆s that is crucial for
shape recovery and other properties such as absorbed heat flux βϕq, convection
coefficient hc and the scaled heat capacity C of the material.

6 Shape from Laplace Operator

We now describe our approach towards computing shape from the estimated
Laplace operator ∆s. The estimated ∆s contains an unknown scale factor α
that was not estimated in the previous stage. Therefore, our shape estimates are
inherently subject to an unknown scale. As recognized by [4], this optimization
highly depends on the quality of the intrinsic quantities and initial shape estimates
due to the possibility of non-rigid edge lengths preserving deformations. While [4]
tackled challenges by focusing on the problem of style transfer with good initial
shape estimates, it is crucial to note our estimates of the operator come from
noisy temperature measurements captured using a thermal camera, and our
initialization to the shape optimization is a flat plane.

6.1 Ambiguities in Shape

It is crucial to note that the Laplace operator is intrinsic in nature, i.e., it is
independent of the specifics of the object’s embedding in 3D space. For example,
the Laplace operator is invariant to the rigid body transformations of the object.
Unfortunately, the equivalent class of shapes that have the same Laplace operator
is quite large. We provide an intuitive characterization of this class using the
notion of Gaussian curvature.
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Gaussian Curvature is also an intrinsic property of a surface. At any point on
the surface, it is given by the product of principal curvatures [19] K = κ1κ2. In
its discrete form, it is described as the deviation of vertex angle sum Θi =

∑
θjki

from the Euclidean angle sum 2π around a vertex. For a vertex with dual area Ai

this is formally written as, Ki = (2π−Θi)/Ai. Concave and convex surfaces take
values K > 0, developable surfaces have K = 0, and saddle points have K < 0.

Possible ambiguities in shape. A well-known fact in differential geometry is that
the Laplace operator is fully determined by the discrete Riemannian metric up to a
scale factor [17,55]. Computing Gaussian curvatures from the Riemannian metric
is straightforward, as it describes edge lengths in a triangular mesh. Knowing
the sign of Gaussian curvature reduces the combination of principal curvature
signs to two, implying, if K > 0 then κ1, κ2 > 0 or κ1, κ2 < 0. Obtaining an
embedding by optimizing the least squares objective with respect to the reference
Laplacian can yield one of two possible principal curvature directions based on
the initialization. For smooth objects, this implies that the recovered shapes
could either be locally convex or concave when K > 0 or one of two possible
hyperbolic or developable surfaces when K < 0 or K = 0 respectively.

6.2 Resolving Shape Ambiguities

We introduce camera and normal constraints to resolve the above ambiguities.

Camera ray constraints. Every vertex vi corresponding to pixel pi must lie along
the camera ray direction. To satisfy this constraint, we optimize depth D at
every pixel pi. The depth D is used to obtain the 3D vertex locations of the
mesh along the camera rays. This avoids the problem of self-intersections during
mesh optimization as camera rays don’t intersect beyond the origin. Further, any
isometric deformation is also constrained within the object’s silhouette along the
camera ray, significantly narrowing ambiguous deformations in the shape.

Normal constraints using absorbed heat flux. If all the active heating to the object
is only due to light absorption then the recovered heat flux from Eq. 8 loosely
resembles the shading (or irradiance) as shown in Fig. 3(left b). Normals that
point toward the light source receive more energy (due to Lambert’s cosine law)
and hence absorb more energy compared to the ones that point away.

If ambiguous shapes have normals n1,n2, then their absorbed heat flux values
βϕq for a light source s is going to be different. Knowing which side of the camera
the light source was placed, looking at βϕq values within small patches can reveal
if the retrieved shape has the right sign of principal curvatures κ1, κ2. But we
take an even simpler approach and collect two videos T1,T2 with light sources
placed on opposite sides of the camera {s1x < 0, s2x > 0}3. Then a pixel-wise
comparison of the normalized heat flux image can be used to assign a half-space

3 Ideally, four light sources are required to resolve the per-pixel ambiguity but we found
that using two light sources to correct a few normals is sufficient for the optimization.
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Fig. 3: Left figures illustrate that absorbed heat flux from light sources resembles
shading information in visible images. Incorporating constraints like Lhs derived from
heat flux images enhances shape recovery, whereas naive optimization leads to shape
ambiguities. Figures on the right demonstrate the impact of coarse-to-fine optimization
on retrieving low-frequency information, in comparison to optimization at fine resolution.

direction Nx
hs along an axis as follows,

Nx
hs =

{
1 if β̂ϕq

1
− β̂ϕq

2
≥ ϵhs

−1 if β̂ϕq

1
− β̂ϕq

2
≤ −ϵhs

. (9)

Here, β̂ϕq

1
, β̂ϕq

2
represent normalized heat flux images as shown in Figs. 3b on

the left panel. Only pixels that have ϵhs difference in the normalized heat flux
image get assigned a half-space direction. The following hinge penalty is added to
nudge the optimization towards shapes that have components of normals along
the right direction,

Lhs =
1

V

∑
max(−nx ∗ Nx

hs, 0). (10)

Here, a vertex will only incur a loss when the sign(nx) does not obey sign(nx
hs).

Please note that in theory, one would require four videos to account for pixels
that do not have a normal component along the axis of lighting. In practice, we
found that only a few normals have to be corrected for the entire shape to snap
in the correct convex/concave configuration.

Optimization procedure. Our objective for shape from the Laplace operator is:

D* = argmin
D

E(T̂) + λsmLsm + λhsLhs + λsyLsy. (11)

Here, Lsm is the normal consistency smoothness [39], Lsy is symmetry loss along
an axis used in the coarsest stage of our optimization for regularization and
λsm, λhs, λsy are weights to the respective loss terms. Typically, our optimization
takes less than a minute, using a AdamUniform optimizer from Nicolet et al. [34]
which diffuses the gradients over the entire domain allowing for a smoother
optimization of shapes.
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Fig. 4: Accuracy of shape recovery using simulations for the Stanford Bunny of varying
thicknesses. Notice the shape details (bumps, normal discontinuities, crevices, etc.)
recovered on the Bunny even with a thickness of 1 cm, and good overall shape (albeit
with reduced detail) even for large thicknesses of 10 cm and 20 cm, demonstrating the
effectiveness of our surface approximation and optimization method.

6.3 Coarse-to-Fine Refinement

To enhance our reconstruction results we further implement a hierarchical refine-
ment approach as shown in Fig. 3 (right) Given the inherent noise in thermal
videos, the accurate reconstruction of low-frequency information at finer resolu-
tions poses a challenge. The Laplacian being a high-pass filter with a response that
is quadratic in frequency, primarily captures local shape details. Incorporating
this localized information at finer resolutions hinders the faithful reconstruction
of low-frequency features. Therefore, we initially reduce the image resolution
through downsampling and conduct reconstructions using a coarser mesh. The
estimated coarse mesh is then used as an initial guess for further refinement.

7 Experimental Results

Fig. 5: Setup where the object is il-
luminated with incandescent lights

Hardware setup. We use a FLIR Boson
thermal camera that is radiometrically cali-
brated and has a pixel resolution of 512× 640.
The camera is operated in TStable mode with
radiometry enabled. Further, we place two
light sources at uncalibrated locations and cap-
ture two 15-second videos, each with one light
source active at a time. Before capture, we
do a Flat Field Correction (FFC) and disable
FFC for the video’s remaining duration. The
first ten video frames are used for removing
reflections and fixed pattern noise, while our
method uses the remaining footage at 6FPS.

Simulation results with varying thicknesses. Figure 4 shows shape recov-
ery results from thermal videos obtained from volumetric simulations of heat
transport, while our shape optimization uses the approximated heat equation
(Eq. 7). We verify that our surface approximation can faithfully recover shape



12 S. Narayanan et al.

Table 2: Average absolute shortest distance error in mm w.r.t. Kinect and SFM scans.
The gross heights of these objects are 6 cm, 13.5 cm, 10.5 cm, 10.5 cm, and 10.2 cm
for the bears respectively. The low errors show the effectiveness of our surface model,
optimization, coarse-to-fine refinement, and ambiguity resolution strategy.

Ball Soda-Can Bottle-1 Bottle-2 Bear-black Bear-Tex. Bear-Transp.

Kinect 0.7 1.3 2.0 2.2 2.8 2.8 3.0
SFM 1.2 0.8 1.2 1.3 1.4 1.6 1.7

details up to a object thickness of 1 cm and maintains overall shape, albeit with
reduced detail even at 20 cm thickness.

Details on real-world objects. We evaluated the effectiveness of our method
using a variety of real-world objects that exhibit diverse shapes, including intricate
ridges and grooves, as shown in Figures 6 and 7. These objects are made of
different materials: acrylic plastic for the ball and the bear, PET plastic for
packaged bottles, aluminum alloys for the soda can, and plastic filament for the
3D-printed bunny. The objects in Figure 6 were painted black to enhance light
absorption, with an approximately known emissivity. In contrast, Figure 7 shows
the effectiveness of our method with varying visible reflectances. The objects also
vary in thickness, and the bunny, the thickest among them, is 4.5 cm wide, having
a 2mm shell thickness with honeycomb structures inside for solid geometry.

Qualitative results. The reconstructed shape outputs are displayed in the
third and fourth columns of Figures 6 and 7. The reconstructions faithfully
recover the overall object geometry, including high-frequency details such as
the grooves in the bottles and the bow tie on the bear. In addition, Figure 7
shows reconstructions of identically shaped bears painted black, painted to have
strong texture, and without any paint (i.e., transparent). These results shows
that our method works across a wide range of visible BRDFs, including objects
with spatially-varying albedo, translucent (Fig. 1), and transparent appearances.
Note that shape recovery for such dark, transparent, or translucent objects fails
terribly with SFM or Kinect scans, highlighting the benefits of capturing surface
emission using thermal cameras. Although our results are far from perfect due to
poor signal-to-noise ratio from thermal cameras, we believe that the obtained
results have significantly higher quality compared to previous efforts towards
shape recovery [33,49] using thermal cameras (see Fig. 13 in [49], Fig. 7 in [33]).

Quantitative comparisons. The last column in Figures 6 and 7 show the
signed distance error for the obtained reconstructions compared to the ground
truth dense SFM scans for these objects painted with dense textures (Table 2
right). Comparisons are done after ICP alignment of obtained reconstructions
with their respective SFM GTs. For the 3D printed bunny we make comparisons
with the true 3D model. Table 2 reports the absolute average closest-distance
error (unsigned) compared with dense SFM and also scans with Kinect. Our
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Fig. 6: Shape optimization results for real-world objects with thermal video of heat
conduction as inputs. The second column shows the absorbed heat flux at every vertex
location obtained in Sec. 5, visualized in the form of an image for video inputs with light
sources placed at two sides of the camera. The subsequent columns show reconstructed
shapes from flat mesh initializations obtained by following the optimization procedure
in Sec. 6. The last column shows signed distance error of the reconstructions with their
corresponding SFM scans (computed using 50 views) shown in the previous column
after ICP alignment (absolute errors in Table 2). We also show shape recovery with a
3D printed bunny which achieves an mean absolute (unsigned) error of 1.4mm, albeit
with less surface detail because of the dense internal honeycomb structures.

reconstructions obtain an average distance error of less than 1.8mm with the SFM
scans for objects as tall as 13.5 cm. The method also achieves a mean absolute
error of 1.4mm when compared to the 3D printed Bunny. These quantitative
comparisons strongly validate our model and approach for 3D shape recovery.
In all cases, the overall structure is faithfully recovered with mean absolute
reconstruction errors (MAE) of less than 1.8mm.
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Fig. 7: Versatility of our approach in reconstructing various object materials (transpar-
ent, textured, homogeneous & black). The second column shows iso-contour lines of
temperature with spatial gradient direction (black arrows) indicating observable heat
flow in the thermal spectrum for varying visible reflectance properties. Notably, the
reflectance properties of many visibly transparent objects appear opaque in thermal
enabling heat flow observations in such transparent or translucent objects. Tab. 2 shows
the absolute average distance error for these reconstructions.

Limitations. Materials with high thermal conductivity require light sources with
high spatial frequency for good SNR due to rapid heat distribution. Low thermal
conductivity materials can use lower-frequency sources but need longer heating.
Further, our method assumes known emissivity, which varies with material
properties, surface roughness, and viewing angle, affecting the temperature
measurement. Please refer to the supplementary material for further discussion.

8 Conclusion

Heat conduction happens all around us, from pouring hot coffee into a mug to
walking barefoot on the floor, and it is not just limited to light absorption. Our
work takes a step forward in using this novel cue to extract shape information
from thermal videos. To our knowledge, this is the first attempt to recover the
intrinsic surface Laplace operator from noisy thermal data and extract shape
using the first principles of heat conduction. We derived and validated a surface
approximation to the volumetric heat transport equation for objects with varying
thicknesses and material properties. We resolve the ambiguity in shape recovery
and demonstrate accurate reconstructions for complex geometries with varying
visible BRDFs. As thermal cameras become cheaper and more sensitive, exploring
heat conduction as a novel cue is an exciting research avenue.
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