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A Deriving Transient Heat Equation

Consider an infinitesimal volume of our domain Ω as shown in the Fig. 1 where
Ėst be the rate of change of stored energy and Ėg be the rate of generated
energy inside this volume. We define conduction heat rates perpendicular to our
infinitesimal volume in x, y and z directions by qx, qy, qz, and heat rate at the
corresponding opposite surface to be qx+dx, qy+dy and qz+dz. According to the
first law of thermodynamics, we can write the total energy conservation in the
system as follows,

Ėin + Ėg − Ėout = Ėst (1)

Substituting the respective quantities into the above equation we get,

qx + qy + qz + q̇dxdydz − qx+dx − qy+dy − qz+dz = ρcp
∂T

∂t
dxdydz (2)

where q̇ is the rate of energy generated per unit volume in the medium (W/m3), ρ
is the density (kg/m3) and cp is the specific heat capacity of the solid (J/(kg ·K)).
Now, we can then define first-order Taylor series expansion for heat rates at the
opposite sides as,

qx+dx = qx +
∂qx
∂x

dx

qy+dy = qy +
∂qy
∂y

dy

qz+dz = qz +
∂qz
∂z

dz

(3)

The conduction rates within an isotropic medium can be evaluated through
Fourier’s law of heat conduction,

q = −kA∇T (4)

where k is the thermal conductivity (W/(m · K)), A is the surface area (m2)
and ∇T spatial temperature gradient (K/m). Substituting Eq. 3 into Eq. 4 and
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Fig. 1: An infinitesimal volume inside the object with sides dx, dy, dz where Ėst, Ėg is
rate of change of the energy stored and rate of change of the energy generated inside
this volume respectively.

rearranging it, we get,

qx − qx+dx = dxdydz
(
k
∂2T

∂x2

)
qy − qy+dy = dxdydz

(
k
∂2T

∂y2

)
qz − qz+dz = dxdydz

(
k
∂2T

∂z2

) (5)

here we have substituted for the cross-sectional area in the respective directions
and the thermal conductivity k is assumed to be a constant. Plugging Eq. 5 back
into the conservation of energy in Eq 2 and dividing out the infinitesimal volume
we obtain, (∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
+

q̇

k
=

1

α

∂T

∂t
(6)

where, α = k/ρcp is the thermal diffusivity (m2/s). This is the transient heat
conduction equation in a solid medium [3].

Boundary conditions. The above-mentioned Eq. 6 was derived for an infinites-
imal volume inside the domain Ω regardless of the conditions on its surface ∂Ω.
While it models heat transfer through conduction within the domain, it does not
account for heat transfer through other modes such as convection and radiation.
In order to have a well-posed problem, we need to account for these heat transfer
modes. Since both convection and radiation are surface phenomena, they are
generally specified as boundary conditions.

Since a surface has no thickness and hence zero mass it cannot store energy.
Therefore, any amount of heat entering the surface must exit on the other side.
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This is mathematically expressed as,

−k∇T · n̂ = hc(T − Tsurr) + σϵ(T 4 − T 4
surr) (7)

where n̂ is the surface normal pointing out from the surface, hc is the convective
heat transfer coefficient (W/(m2 ·K)), ϵ is the emissivity of the surface, σ is the
Stefan-Boltzmann constant (W/(m2 ·K4)) and Tsurr is the temperature of the
surrounding medium. The left-hand side of the above equation represents the
heat flux through the surface, from inside to outside, given by Fourier’s law of
heat conduction. The right-hand side represents the heat flux through the surface
due to convection and radiation. The above equation simply states that heat
conduction through a surface in a given direction is equal to the heat transfer
through convection and radiation in the same direction.

Combined heat equation with boundary conditions. Energy conservation
equation of an infinitesimal volume exposed to the surface with a surface area A
and has no internal energy generation (q̇ = 0) can be written as,

ρcp
dT

dt
dv = k∆T dv + σϵA(T 4

surr − T 4) + hcA(Tsurr − T ) + βϕq (8)

Here, we have merged the boundary condition and the energy conservation
equation into one equation. ∆ is the generalized Laplace-Beltrami operator that
estimates Laplacian in a Partial Differential Equations (PDE). The last term
represents energy input to the infinitesimal volume through external means where
ϕq is the input power per unit area (W/m2) and β is the energy absorption factor.
Dividing out the infinitesimal volume and rearranging the terms we obtain,

dT

dt
= α∆T +

1

ρcpdv

(
σϵA(T 4

surr − T 4) + hcA(Tsurr − T ) + Aβϕq

)
(9)

If the infinitesimal volume is not exposed to any surface and the external energy
input is only coming along the surface, then the above equation reduces to the
transient heat conduction Eq. 6.

B Discussion and Limitations

Effect of material type on thermal observations: High thermal conductivity
allows heat to reach faster to far away points on the object but reduces the
amount of heat concentration. Hence, high-power light sources are needed for
such materials to get a good SNR. High thermal conductivity also implies that
the spatial gradient of temperature on an object is small impacting the Laplace
operator estimation. In such cases, inducing heat using a source with high spatial
frequency can introduce sufficient temperature differences observable by thermal
cameras. Objects with low thermal conductivity can work with comparatively
low-frequency sources but require longer durations to induce sufficient heat
conduction.
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Errors at Shape Boundaries: Our approach fails
to accurately estimate Laplacian weights at the bound-
ary since the heat travels beyond an object’s silhou-
ette. This causes the shape near the boundary to have
comparatively large errors. But using simulations we
validated that inaccurate Laplacian estimates near the
boundary have minimal effect on heat flow at interior
regions by comparing the forward model with a full
bunny and one that is sliced at the silhouette bound-
ary. Additionally, this issue can be mitigated by having
multiple views for shape recovery and is a promising
avenue of future work.

Effect of object’s emissivity: Our work assumes the emissivity of objects
is known, but it depends on a variety of factors such as material property,
surface roughness, and viewing angle [3]. Moreover, polished surfaces are more
reflective in thermal medium, and have low emissivity which makes temperature
measurement hard for such objects. Note that materials like glass and acrylics
that are transparent in the visible spectrum absorb infrared radiation and, hence,
heat up. In theory, our approach does not depend on the visible BRDF, but in
practice, SNR increases with the intensity of generated heat and the surface’s
emissivity.

C Operation of Thermal Cameras

Any object with a temperature above absolute zero emits thermal radiation. A
thermal camera operates by converting the incoming radiation in the Long Wave
Infrared (LWIR) spectrum into digital images. The total radiation emitted by a
blackbody at temperature Tbb over all wavelengths is approximated using Stefan-
Boltzmann law [1], which states that the total power emitted by a blackbody Pbb

is proportional to the fourth power of its temperature.

Pbb = σT 4
bb (10)

A thermal camera with a spectral response in LWIR region measures only a
portion of this total radiation. Relating the power received by a thermal camera
to the temperature of the object would require solving a complex double integral.
This relation is typically approximated through a curve fitting with known
temperature of the object and power received by the thermal cameras.

Sakumo-Hattori curve. Camera manufacturers generally use a variation Sakumo-
Hattori equation to relate the temperature of the black body to the measured
signal. This is given by,

Tbb =
B

ln( R
(U−J0)/J1

+ F )
(11)
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Fig. 2: Sakumo Hattori fit (Eq. 11) for a black body at different temperatures

where R, B, F , J0 and J1 are calibration parameters. Note that Eq. 11 returns
the surface temperature that a blackbody must be at in order for the camera to
produce the same pixel value U . In practice, the total thermal radiation reaching
the camera includes several components like the emissivity ϵ of the object and
also the surrounding temperature.

Incident radiant flux on thermal cameras. To thoroughly assess the elements
of thermal radiation, one must account for emitted, reflected, and transmitted
radiation at every interface between media along the optical ray originating from
the camera. Nagase et al. [2] leveraged the transmission property of thermal
radiation through multi-spectral measurements for shape recovery of objects. In
cases where objects are within a few meters, the atmosphere can be deemed fully
transmissive. Considering the emitted and reflected radiations, the total radiation
captured by the thermal camera comprises of two components radiation emitted
by the object, and the radiation reflected by it. The total radiant power that is
received can then be written as,

Wtot = ϵobjWobj + (1− ϵobj)Wsurr (12)

here, ϵobj is the emissivity of the object and the radiation emitted due to the
atmospheric temperature has been ignored since the atmosphere is considered to
be fully transmissive. A similar expression can be written in terms of pixel counts
as camera’s measured signal is considered proportional to the input radiant power.

Utot = ϵobjWobj + (1− ϵobj)Usurr (13)

Thermal camera calibration. The radiometric calibration of thermal cameras is
conducted by the camera manufacturer, utilizing blackbody sources arranged
in a semi-circular configuration with varied, known temperature values. In this
process, a thermal camera, mounted on a robotic arm, is directed towards each
source, and the camera signal received for the known temperature measurements
is recorded to establish a curve, as represented by Eq. 11. Over time, due to
electronic aging, the calibration parameters may undergo a shift. To address this,
we implement a straightforward calibration procedure using a blackbody set at



6 S. Narayanan et al.

known temperature values and re-fitting the camera response curve as illustrated
in Fig. 2.

Estimating object’s emissivity. The signal received by thermal cameras for an
object at a specific temperature is significantly influenced by emissivity. Despite
emissivity values for various materials being available online, it is still influenced
by properties such as material roughness and viewing angle. A straightforward
method to estimate the emissivity of a surface involves using a high-emissivity
material, such as electrical tape, affixed to the object’s surface. The ratio of
counts received by the electrical tape section of the object compared to other
regions provides a preliminary estimate of the object’s emissivity.

References

1. Bergman, T.L.: Introduction to Heat Transfer. Wiley (2011)
2. Nagase, Y., Kushida, T., Tanaka, K., Funatomi, T., Mukaigawa, Y.: Shape from

thermal radiation: Passive ranging using multi-spectral lwir measurements. In: 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
12651–12661 (2022). https://doi.org/10.1109/CVPR52688.2022.01233

3. Vollmer, M., Mllmann, K.P.: Some Basic Concepts in Heat Transfer, chap. 4, pp. 351–
392. John Wiley & Sons, Ltd (2017). https://doi.org/10.1002/9783527693306.
ch4

https://doi.org/10.1109/CVPR52688.2022.01233
https://doi.org/10.1109/CVPR52688.2022.01233
https://doi.org/10.1002/9783527693306.ch4
https://doi.org/10.1002/9783527693306.ch4
https://doi.org/10.1002/9783527693306.ch4
https://doi.org/10.1002/9783527693306.ch4

	Shape from Heat Conduction - Supplementary Material

