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SVM - linearly separable case

n training points (Xq, o) Xp) + S

d features X; is a d-dimensional vector  * y
+ O
+ + 4+
Primal problem: minimize,,, iw.w .. B
(wxj+b)y; > 1, Vj +

w - weights on features (d-dim problem)

Convex quadratic program — quadratic objective, linear
constraints

But expensive to solve if d is very large
Often solved in dual form (n-dim problem)



Constrained Optimization

min, z2
s.t. x>0

MiNn, x

s.t. > —1

r* = max(b,0)

Mmin, x
s.t. 2>1

¥ =0

Constraint inactive

=1
Constraint active
and tight




Constrained Optimization — Dual Problem

—
1
1
35+ :
1
1

: b +ve
1
254 :
!
1
2t !
1
. \ ;

\\ 1/

\'\ I//
I /
!

1 1 1 1 : 1

0-2 -15 -1 -05 1] 0s 1 15
*

x* =0>

o = 0 constraint is inactive
o > 0 constraint is active

Primal problem:
Ming T2
s.t. >0

Moving the constraint to objective function
Lagrangian:

L(z,a) = 2% — a(z —b)
s.t. >0

Dual problem:

ming L(x, o
maxq d(a)” " ()

s.t. >0



Connection between Primal and Dual

Dual problem: d* = max, d(a) = maXq ming L(x, o)
s.t. >0 s.t. >0

Notice that

Primal problem: p* = ming 2 = min max L(:l?, a)
s.t. x>b r  az0

Why?  L(z,a) = 22 — a(z — b)

max L(z,a) = 2* — min a(z — b) =

a>0 a>0

x> ifx>0b
oo ifx<b



Connection between Primal and Dual

Primal problem: p* = min, 2 Dual problem: d*= max, d(o)
s.t. x>0 s.t. >0
- minmax L(x, o) = MaXq Ming L(z, &)

z  az0 s.t. a>0

» Dual problem (maximization) is always concave even if
primal is not convex

Why? Pointwise infimum of concave functions is concave.
[Pointwise supremum of convex functions is convex.]

L(z,a) =22 — a(z —b)



Connection between Primal and Dual

Primal problem: p* = ming z°2 Dual problem: d* = max,, d(a)
s.t. x>0 s.t. >0

» Weak duality: The dual solution d* lower bounds the primal
solution p*i.e. d* £ p*

To see this, recall L(z,a) = 22 — a(z — b)

For every feasible x (i.e. x > b) and feasible a (i.e. a = 0) , notice
that
d(a) = Ming L(x, ) £ x2—a(xb) < x2

Since this holds for all feasible x, in particular it holds for x*
achieving the min of p*, hence d(a) < p* for all feasible a > 0.



Connection between Primal and Dual

Primal problem: p* = min, 2 Dual problem: d*= max, d(o)
s.t. x>0 s.t. >0

» Weak duality: The dual solution d* lower bounds the primal
solution p*i.e. d* £ p*

» Strong duality: d* = p* holds often for many problems of
interest e.g. if the primal is a feasible convex objective with linear
constraints



Connection between Primal and Dual

What does strong duality say about a* (the a that achieved optimal value of
dual) and z* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for o* and x*:

e 1. YL(z*,a*) =0 i.e. Gradient of Lagrangian at =* and a* is zero.

o 2. x* >bi.e. x* is primal feasible

o 3. o >01i.e. «aF is dual feasible

e 4. a*(x* —b) =0 (called as complementary slackness)

We use the first one to relate * and a*. We use the last one (complimentary

slackness) to argue that o = 0 if constraint is inactive and a* > 0 if constraint

is active and tight. 9



Solving the dual

L(z, )
maxa ming 2 — a(z — b)
s.t. a>0

Solving:

Find the dual: Optimization over x is unconstrained.

2
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Q
Solve: Now need to maximize L(x",a) over a = 0
Solve unconstrained problem to get a’ and then take max(a,0)
0 Q ,
—L(z*,a)=——=+b = a =2b
Ja ( ) 2 .
.
= o = max(2b,0) - =5 = max(b,0)

o = 0 constraint is inactive, a > 0 constraint is active and tight .



Dual SVM - linearly separable case

n training points, d features (X4, ..., X,,) where x: is a d-dimensional
vector
* Primal problem: minimizey, g, %w.w

(wxj+b)y; > 1, Vj
w - weights on features (d-dim problem)

 Dual problem (derivation):

L(w,b, o) = %W.W — > [(W.Xj + b) Y — 1}
Oéj 2 O, \V/j

o - weights on training pts (n-dim problem)

11



Dual SVM - linearly separable case

* Dual problem:

MaXq MiNy p L(W, b, o) = %W.W — 2. [(W.Xj -+ b) Yj — 1}

Oéj Z 07 \V/]
oL
— 0 W — Zajijj If we can solve for
W F os (dual problem),
, then we have a
L lution f b
oL _ N oo = 0O solution for w,
ab Z Jyj (prlma| pr0b|em)
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Dual SVM - linearly separable case

.. 1
MaXimiZey ZZ Qa; — 5 Zz,j Q;05YY i X4.X

>0y =0

87 Z O
Dual problem is also QP W= ) yiX;
Solution gives os > i

What about b?




Dual SVM: Sparsity of dual solution

=0 +

o 3 0

T,

o)

Ik +

>

* s

ocj>0

s

W= ) ajyiX;
;

Only few ays can be
non-zero : where
constraint is active and
tight

(w.x; + bly,=1

Support vectors —
training points j whose

oS are non-zero



Dual SVM - linearly separable case

.. 1
MaxXimilIZEy ZZ Qa; — 5 Zz,j Q;05YY i X4.X

>ioy; =0
047; > O

Dual problem is also QP

Solution gives os

Use support vectors with o, >0 to
compute b since constraint is tight
(w.x, +b)y, =1

W= ) oYX,

(2

b=y — W.Xp

for any k£ where oy > 0






