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SVM$– linearly(separable(case

• Convex'quadratic'program'– quadratic)objective,)linear)
constraints

• But$expensive$to$solve$if$d$is$very$large
• Often&solved&in&dual&form&(n!dim$problem)
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w – weights on features (d-dim problem)

n"training"points (x1,"…,"xn)"
d"features xj is#a#d!dimensional*vector*

• Primal'problem:

w
.x
+"
b"
="
0



Constrained+Optimization
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Constraint)inactive Constraint)active)
and$tight

x

⇤
= max(b, 0)



Constrained+Optimization+– Dual%Problem
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Moving'the'constraint'to'objective'function
Lagrangian:

Dual%problem:

! ="0"constraint"is"inactive
! >"0""constraint"is"active

b"+ve

Primal'problem:



Connection(between(Primal(and(Dual
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Dual%problem:%d*#=

Primal'problem:'p* =

=

Notice'that

=

Why?



Connection(between(Primal(and(Dual
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Primal'problem:'p* =" Dual%problem:%d*#=

! Dual%problem%(maximization)%is%always%concave%even%if%
primal'is'not'convex'

==

Why?%%%%Pointwise%infimum of#concave#functions#is#concave.
[Pointwise*supremum*of#convex'functions)is)convex.]



Connection(between(Primal(and(Dual
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Primal'problem:'p* ="

! Weak%duality:%The$dual$solution$d*$lower$bounds$the$primal$
solution(p*(i.e.(d*(≤((p*

To#see#this,#recall#

For$every$feasible$x$(i.e.$x$≥$b)$and$feasible$α"(i.e.%α"≥"0)","notice""
that

d(α)#=" ≤""x2 – !(x!b)#≤##x2

Since&this&holds&for&all&feasible&x,#in#particular#it#holds#for#x*#####
achieving)the)min)of)p*,)hence))d(a) ≤"p*"for"all"feasible"α"≥"0.

Dual%problem:%d*#=



Connection(between(Primal(and(Dual
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Primal'problem:'p* ="

! Weak%duality:%The$dual$solution$d*$lower$bounds$the$primal$
solution(p*(i.e.(d*(≤((p*

Dual%problem:%d*#=

! Strong'duality:'d*#=#p*#holds#often#for#many#problems#of#
interest'e.g.'if'the'primal'is'a'feasible'convex'objective'with'linear'
constraints
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Connection(between(Primal(and(Dual
What does strong duality say about ↵

⇤
(the ↵ that achieved optimal value of

dual) and x

⇤
(the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-

ditions) are true for ↵

⇤
and x

⇤
:

• 1. 5L(x

⇤
,↵

⇤
) = 0 i.e. Gradient of Lagrangian at x

⇤
and ↵

⇤
is zero.

• 2. x

⇤ � b i.e. x

⇤
is primal feasible

• 3. ↵

⇤ � 0 i.e. ↵

⇤
is dual feasible

• 4. ↵

⇤
(x

⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x

⇤
and ↵

⇤
. We use the last one (complimentary

slackness) to argue that ↵

⇤
= 0 if constraint is inactive and ↵

⇤
> 0 if constraint

is active and tight.
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Solving(the(dual

Find%the%dual: Optimization*over%x%is%unconstrained.

Solve:"Now"need$to$maximize$L(x*,α)$over$α$≥$0$
Solve&unconstrained&problem&to&get&α’ and$then$take$max(α’,0)

! ="0"constraint"is"inactive,"α">"0""constraint"is"active"and"tight

) ↵0 = 2b



Dual%SVM%– linearly(separable(case

• Primal'problem:

• Dual%problem (derivation):--
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w – weights on features (d-dim problem)

! – weights on training pts (n-dim problem)

n"training"points,"d"features (x1,"…,"xn)"where"xi is#a#d!dimensional*
vector'



Dual%SVM%– linearly(separable(case

• Dual%problem:%%
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If#we#can#solve#for#
!s"(dual"problem),"
then%we%have%a%
solution(for(w,b
(primal(problem)(



Dual%SVM%– linearly(separable(case

Dual%problem%is%also%QP
Solution(gives(!js
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What%about%b?



Dual%SVM:%Sparsity of#dual#solution
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w
.x
+"
b"
="
0

Only%few%!js can$be$
non!zero%:%where%
constraint)is)active)and)
tight

(w.xj +"b)yj ="1

Support'vectors –
training'points'j'whose'
!js are$non!zero

!j >"0

!j >"0

!j >"0

!j ="0

!j ="0

!j ="0



Dual%SVM%– linearly(separable(case

Dual%problem%is%also%QP
Solution(gives(!js
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Use$support$vectors$with$!k>0#to#
compute(b(since(constraint(is(tight(
(w.xk +"b)yk ="1




