Support Vector Machines - Dual formulation

Aarti Singh

Machine Learning 10-315 Sept 30, 2019

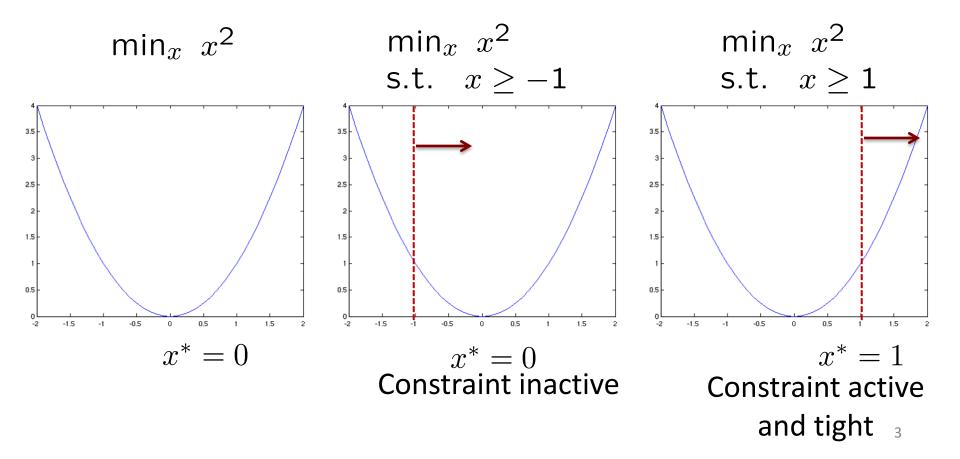
n training points d features $(\mathbf{x}_1, ..., \mathbf{x}_n)$ \mathbf{x}_j is a d-dimensional vector

• <u>Primal problem</u>: minimize_{w,b} $\frac{1}{2}$ w.w $(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1, \forall j$

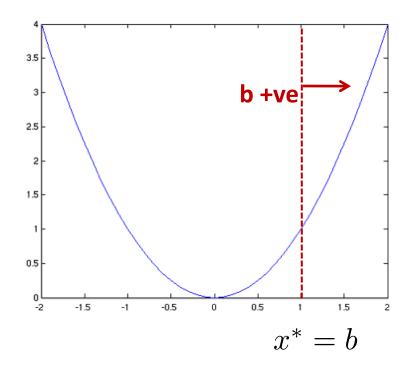
- Convex quadratic program quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

Constrained Optimization

$$\begin{array}{ll} \min_x \ x^2 \\ {\rm s.t.} \ \ x \ge b \end{array} \qquad x^* = \max(b, 0)$$



Constrained Optimization – Dual Problem



Primal problem:

$$\begin{array}{ll} \min_x \ x^2 \\ \text{s.t.} \ x \ge b \end{array}$$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

 α = 0 constraint is inactive α > 0 constraint is active

Dual problem:

$$\max_{\alpha} d(\alpha) \xrightarrow{} \min_{x} L(x, \alpha)$$

s.t. $\alpha \ge 0$

Dual problem: d* = $\max_{\alpha} d(\alpha) = \max_{\alpha} \min_{x} L(x, \alpha)$ s.t. $\alpha \ge 0$ s.t. $\alpha \ge 0$

Notice that

 $\begin{array}{rcl} \mbox{Primal problem: } {\bf p^*=} & \min_x \, x^2 & = & \min_x \max_{\alpha \geq 0} L(x,\alpha) \\ & \mbox{s.t.} & x \geq b & & x & \alpha \geq 0 \end{array}$

Why?
$$L(x, \alpha) = x^2 - \alpha(x - b)$$

$$\max_{\alpha \ge 0} L(x, \alpha) = x^2 - \min_{\alpha \ge 0} \alpha(x - b) = \begin{cases} x^2 & \text{if } x \ge b \\ \infty & \text{if } x < b \end{cases}$$

Primal problem: $p^* = \min_x x^2$ Dual problem: $d^* = \max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

 $= \min_{x} \max_{\alpha \ge 0} L(x, \alpha) = \max_{\alpha} \min_{x} L(x, \alpha)$ s.t. $\alpha > 0$

Dual problem (maximization) is always concave even if primal is not convex

Why? Pointwise infimum of concave functions is concave. [Pointwise supremum of convex functions is convex.]

$$L(x,\alpha) = x^2 - \alpha(x-b)$$

Primal problem: $p^* = \min_x x^2$ Dual problem: $d^* = \max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

Weak duality: The dual solution d* lower bounds the primal solution p* i.e. d* ≤ p*

To see this, recall
$$L(x, \alpha) = x^2 - \alpha(x - b)$$

For every feasible x (i.e. $x \ge b$) and feasible α (i.e. $\alpha \ge 0$), notice that

$$d(\alpha) = \min_{x} L(x, \alpha) \le x^2 - \alpha(x-b) \le x^2$$

Since this holds for all feasible x, in particular it holds for x^* achieving the min of p^* , hence $d(a) \le p^*$ for all feasible $\alpha \ge 0$.

Primal problem: $p^* = \min_x x^2$ Dual problem: $d^* = \max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

Weak duality: The dual solution d* lower bounds the primal solution p* i.e. d* ≤ p*

Strong duality: d* = p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* :

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero.
- 2. $x^* \ge b$ i.e. x^* is primal feasible
- 3. $\alpha^* \ge 0$ i.e. α^* is dual feasible
- 4. $\alpha^*(x^* b) = 0$ (called as complementary slackness)

We use the first one to relate x^* and α^* . We use the last one (complementary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

Solving the dual

$$\max_{\alpha} \min_{x} x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Find the dual: Optimization over x is unconstrained.

$$\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2} \qquad L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)$$
$$= -\frac{\alpha^2}{4} + b\alpha$$

2

<u>Solve</u>: Now need to maximize $L(x^*, \alpha)$ over $\alpha \ge 0$ Solve unconstrained problem to get α' and then take max($\alpha', 0$)

 $L(x, \alpha)$

$$\frac{\partial}{\partial \alpha} L(x^*, \alpha) = -\frac{\alpha}{2} + b \quad \Rightarrow \alpha' = 2b$$
$$\Rightarrow \alpha^* = \max(2b, 0) \qquad \qquad \Rightarrow x^* = \frac{\alpha^*}{2} = \max(b, 0)$$

 α = 0 constraint is inactive, α > 0 constraint is active and tight 10

n training points, d features

 $(\mathbf{x}_1, ..., \mathbf{x}_n)$ where x_i is a d-dimensional vector

<u>Primal problem</u>:

$$\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j} \geq 1, \ \forall j \end{array}$$

w - weights on features (d-dim problem)

• <u>Dual problem</u> (derivation):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \ \forall j$$

 α - weights on training pts (n-dim problem)

• Dual problem:

 $\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$ $\alpha_{j} \ge 0, \ \forall j$

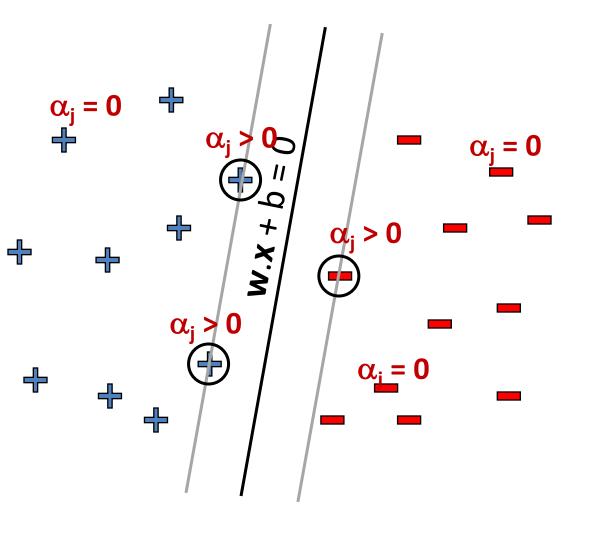
$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$
$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

If we can solve for α s (dual problem), then we have a solution for **w**,b (primal problem)

maximize_{α} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \ge 0$

Dual problem is also QP Solution gives $\alpha_j s \longrightarrow$ What about b?

Dual SVM: Sparsity of dual solution



$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few $\alpha_j s$ can be non-zero : where constraint is active and tight

$$(w.x_{j} + b)y_{j} = 1$$

Support vectors – training points j whose α_j s are non-zero 14

maximize_{α} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \ge 0$

Dual problem is also QP
Solution gives
$$\alpha_j s \longrightarrow b = y$$

Use support vectors with $\alpha_k > 0$ to
compute b since constraint is tight
(w.x_k + b)y_k = 1

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$

 $b = y_k - \mathbf{w}.\mathbf{x}_k$
for any k where $lpha_k > 0$