Linear Regression

Aarti Singh

Machine Learning 10-315 Oct 23, 2019

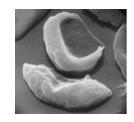
Supervised Learning Tasks

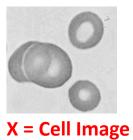
Classification

X = Document

Sports Science News

Y = Topic



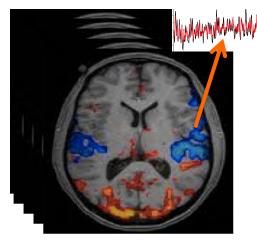


Y = Age of a subject

Anemic cell Healthy cell

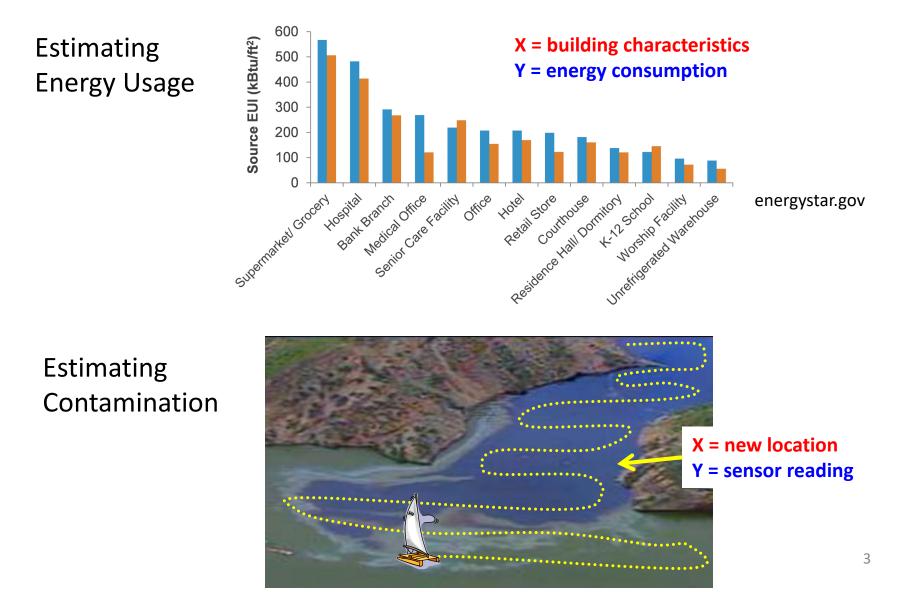
Y = Diagnosis

Regression



X = Brain Scan

Regression Tasks



Performance Measures

Performance Measure: Quantifies knowledge gained

loss(Y, f(X)) - Measure of closeness between true label Y and prediction f(X)

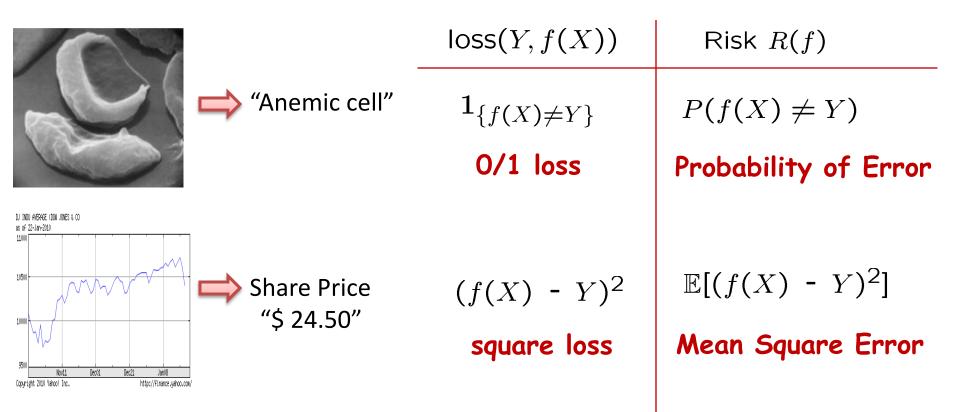
Don't just want label of one test data (cell image), but any cell image $X \in \mathcal{X}$ $(X, Y) \sim P_{XY}$

Given a cell image drawn randomly from the collection of all cell images, how well does the predictor perform on average?

Risk $R(f) \equiv \mathbb{E}_{XY} [loss(Y, f(X))]$

Performance Measures

Performance Measure: Risk $R(f) \equiv \mathbb{E}_{XY}[loss(Y, f(X))]$



Bayes Optimal Rule

<u>Ideal goal</u>: Construct **prediction rule** $f^* : \mathcal{X} \to \mathcal{Y}$

 $f^* = \arg\min_{f} \mathbb{E}_{XY} [loss(Y, f(X))]$

Bayes optimal rule

What's the rule for Mean Square Error? HW3

Best possible performance:

Bayes Risk $R(f^*) \leq R(f)$ for all f

BUT... Optimal rule is not computable - depends on unknown P_{XY} !

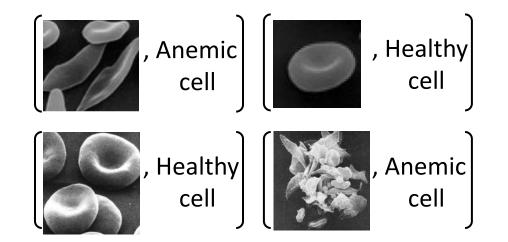
Experience - Training Data

Can't minimize risk since P_{XY} unknown!

Training data (experience) provides a glimpse of P_{XY}

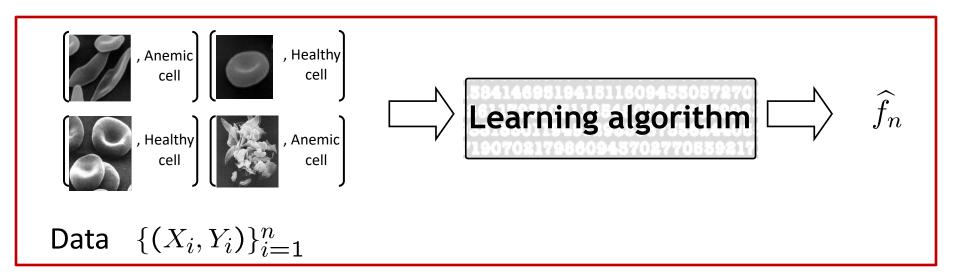
(observed)
$$\{(X_i, Y_i)\}_{i=1}^n \stackrel{i.i.d.}{\sim} P_{XY}$$
 (unknown)

independent, identically distributed



Provided by expert, measuring device, some experiment, ...

Machine Learning Algorithm



 \widehat{f}_n is a mapping from $\mathcal{X} \to \mathcal{Y}$

= "Anemic cell"

Test data X

Empirical Risk Minimization

Optimal predictor:

Empirical Minimizer:

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$
$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left(\frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2\right)$$

Empirical mean

Law of Large Numbers:

$$\frac{1}{n} \sum_{i=1}^{n} \left[\mathsf{loss}(Y_i, f(X_i)) \right] \xrightarrow{\mathsf{n} \to \infty} \mathbb{E}_{XY} \left[\mathsf{loss}(Y, f(X)) \right]$$

Restrict class of predictors

Optimal predictor:

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

Empirical Minimizer:

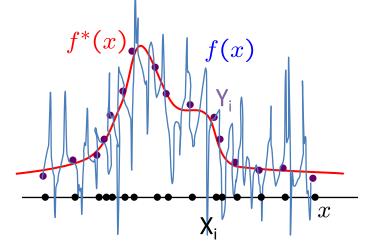
$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

 ∞

Class of predictors

Why? Overfitting! Empiricial loss minimized by any function of the form

$$f(x) = \begin{cases} Y_i, & x = X_i \text{ for } i = 1, \dots, n \\ \text{any value,} & \text{otherwise} \end{cases}$$



Restrict class of predictors

Optimal predictor:

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

Empirical Minimizer:

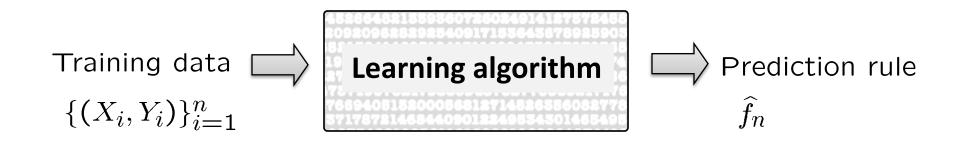
$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

 ∞

Class of predictors

- ${\cal F}$ Class of Linear functions
 - Class of Polynomial functions
 - Class of nonlinear functions

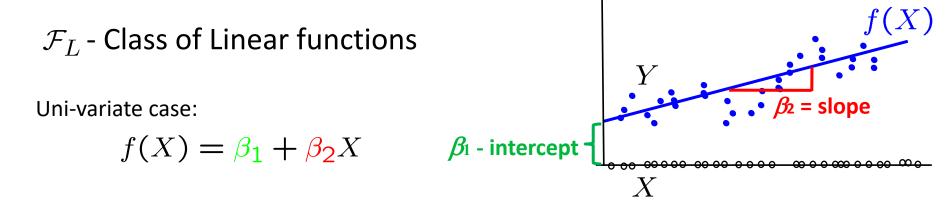
Regression algorithms



Linear Regression Regularized Linear Regression – Ridge regression, Lasso Polynomial Regression Kernelized Ridge Regression Gaussian Process Regression Kernel regression, Regression Trees, Splines, Wavelet estimators, ...

Linear Regression

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$
 Least Squares Estimator



Multi-variate case:

Ĵ

$$f(X) = f(X^{(1)}, \dots, X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

=
$$X\beta$$
 where $X = [X^{(1)} \dots X^{(p)}], \quad \beta = [\beta_1 \dots \beta_p]^T$

1

Least Squares Estimator

$$\widehat{f}_{n}^{L} = \arg\min_{f \in \mathcal{F}_{L}} \frac{1}{n} \sum_{i=1}^{n} (f(X_{i}) - Y_{i})^{2} \qquad f(X_{i}) = X_{i}\beta$$

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (X_{i}\beta - Y_{i})^{2} \qquad \widehat{f}_{n}^{L}(X) = X\widehat{\beta}$$

$$= \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

Least Squares Estimator

$$\widehat{\beta} = \arg \min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg \min_{\beta} J(\beta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\left.\frac{\partial J(\beta)}{\partial \beta}\right|_{\widehat{\beta}} = 0$$

Least Square solution satisfies Normal Equations

$$(\mathbf{A}^T \mathbf{A})\widehat{\boldsymbol{\beta}} = \mathbf{A}^T \mathbf{Y}$$

pxppx1 px1

If $(\mathbf{A}^T \mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y} \qquad \widehat{f}_n^L(X) = X \widehat{\beta}$$

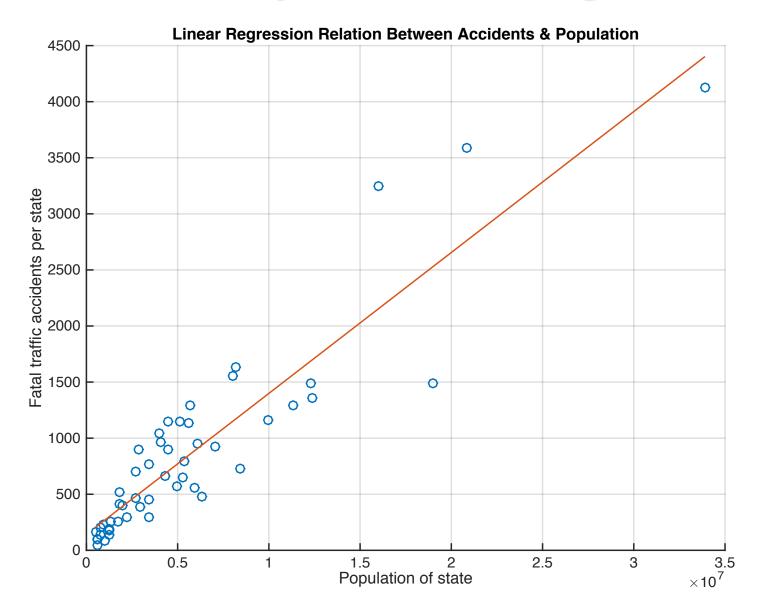
Matlab example – linear regression

```
load accidents
x = hwydata(:,14);
y = hwydata(:,4);
scatter(x,y)
hold on
X = [ones(length(x),1) x];
b = X\v:
```

%Population of states %Accidents per state

b = X\y; yhat = X*b; plot(x,yhat) xlabel('Population of state') ylabel('Fatal traffic accidents per state') title('Linear Regression Relation Between Accidents & Population')

Matlab example – linear regression



Least Square solution satisfies Normal Equations

$$(\mathbf{A}^T \mathbf{A})\widehat{\boldsymbol{\beta}} = \mathbf{A}^T \mathbf{Y}$$

If $(\mathbf{A}^T \mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y} \qquad \widehat{f}_n^L(X) = X \widehat{\beta}$$

Later: When is $(\mathbf{A}^T \mathbf{A})$ invertible ? Recall: Full rank matrices are invertible. What is rank of $(\mathbf{A}^T \mathbf{A})$?

Now: What if $(\mathbf{A}^T \mathbf{A})$ is invertible but expensive (p very large)?

Gradient Descent

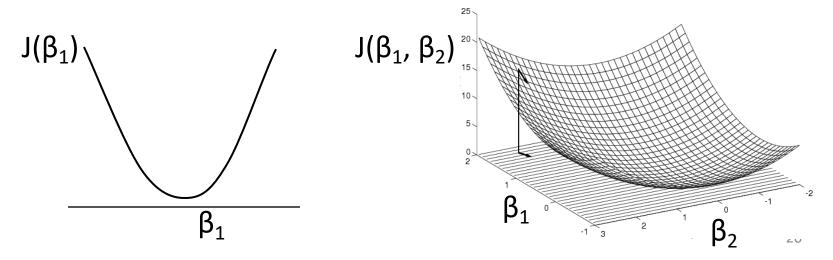
Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if **A** is huge.

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

Treat as optimization problem

<u>Observation:</u> $J(\beta)$ is convex in β .

How to find the minimizer?

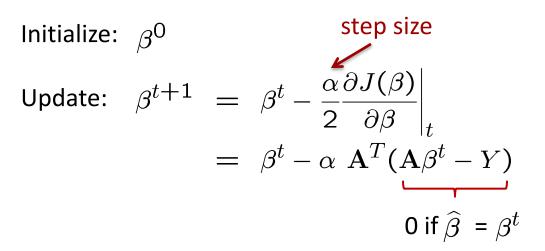


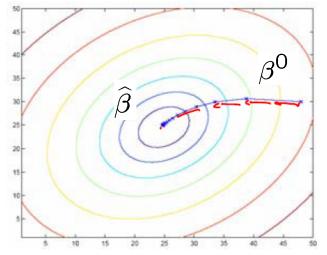
Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if **A** is huge.

$$\widehat{eta} = \arg\min_{eta} rac{1}{n} (\mathbf{A}eta - \mathbf{Y})^T (\mathbf{A}eta - \mathbf{Y}) = \arg\min_{eta} J(eta)$$

Since $J(\beta)$ is convex, move along negative of gradient





Stop: when some criterion met e.g. fixed # iterations, or $\frac{\partial J(\beta)}{\partial c}$

21