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Supervised Learning Tasks

Classification

Sports = Anemic cell
Ef> Science @ Healthy cell
News Y (s
X = Document Y = Topic X = Cell Image Y = Diagnosis

Regression

> Y=Age of asubject

X = Brain Scan



Regression Tasks
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Performance Measures

Performance Measure: Quantifies knowledge gained

loss(Y, f(X)) - Measure of closeness between true label Y and
prediction f(X)

Don’t just want label of one test data (cell image), but any cell
image X € X

(X,Y) ~ Pxy
Given a cell image drawn randomly from the collection of all
cell images, how well does the predictor perform on average?

Risk R(f) = Exy [loss(Y, f(X))]




Performance Measures

Performance Measure: Risk R(f) = Eyy [loss(Y, f(X))]
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Bayes Optimal Rule

Ideal goal: Construct prediction rule f*: X — Y

f*=arg mj_!n Exy [loss(Y, f(X))]

What’s the rule
for Mean
Square Error?

Bayes optimal rule

Best possible performance: HW3

Bayes Risk  R(f*) < R(f) for all f

BUT... Optimal rule is not computable - depends on unknown P,, !
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Experience - Training Data

Can’t minimize risk since Py, unknown!

Training data (experience) provides a glimpse of P,,

(observed) {(X;, Y;)}i— o XY (unknown)

L independent, identically distributed

~N

, Healthy
cell Provided by expert,
7 . .
A measuring device,
598 Anemic some experiment, ...
cell
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Machine Learning Algorithm

, Healthy
cell

) ; :> Learning algorithm :> fn

Data {(X;, Y}l

~ > ' [
fn is a mapping from X — Y In “ {| = “Anemic cell”

Test data X




Empirical Risk Minimization

Optimal predictor: f*=arg mfin E[(f(X) — Y)?]

Empirical Minimizer: fn = arg ;,n']r_l (f(Xi) _ Yz‘)Q
€

Empirical mean

Law of Large Numbers:

oo

3" [loss(V, f(X)] —— s Exy [loss(Y, £(X))]
1=1

S|




Restrict class of predictors

Optimal predictor: f* = arg mfin E[(f(X) — Y)Q]
Empirical Minimizer: fn = arg mip = Z (F(X;) = Y;)
fe@ ni=1
Class of predictors
Overfitting! ;

Empiricial loss minimized by any
function of the form

f(z) = { Yi, r=X;fori=1,....,n se—oo—o

any value, otherwise




Restrict class of predictors

Optimal predictor: f* = arg mfin E[(f(X) — Y)?]
Empirical Minimizer: fn = arg mip = Z (F(X;) = Y;)
fe@ ni=1

Class of predictors

JF - Class of Linear functions
- Class of Polynomial functions
- Class of nonlinear functions
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Regression algorithms

Training data |:> Learning algorithm |:> Prediction rule

Linear Regression

Regularized Linear Regression — Ridge regression, Lasso
Polynomial Regression

Kernelized Ridge Regression

Gaussian Process Regression

Kernel regression, Regression Trees, Splines, Wavelet

estimators, ... 5



Linear Regression

~ 1 n
for = arg— Z (f(X;) — Y};)Q Least Squares Estimator
=1

Fr - Class of Linear functions

Uni-variate case:

f(X) =01+ B2X

Multi-variate case:

f(X) = f(X(l),...,X(P)) =51§/() _|_52)((2) —l—'--—I—ﬁpX(P)

FCO)

s «* 2 =slope

,81-intercept‘[ o

1

= X[ where X:[X(l)---X(p)], 5:[51---5p]T



Least Squares Estimator

fL = arg fmlfr}ﬁ Z (f(X;) —Y;)? (X)) = X8
U
5= argmi %Z X6 — Yi)? FE(X) =

= arg min l(Aﬁ - Y)(AB-Y)
B n

x; ] [ xP xP Y

_ X _ X,é,l) X,é,p) _ Yo _
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Least Squares Estimator

N

3 = arg mﬁin l(Aﬁ — Y)T(Aﬁ —Y)=arg mﬂin J(3)
n

J(B) = (A8 -Y)'(AB-Y)
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Least Square solution satisfies Normal
Equations

(ATA)BE=ATY
pxp pxl p x1

If (ATA) is invertible,

8= ATA)1ATY fl(x)=x8
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Matlab example - linear regression

load accidents

x = hwydata(:,14); %Population of states
vy = hwydata(:,4); %Accidents per state
scatter(x,y)

hold on

X = [ones(length(x),1) x];

b = X\y;

vhat = X*b;

plot(x,yhat)

xlabel('Population of state’)

ylabel('Fatal traffic accidents per state')

title('Linear Regression Relation Between Accidents &

Population')



Matlab example - linear regression

Linear Regression Relation Between Accidents & Population
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Least Square solution satisfies Normal

Equations

(ATA)BE=ATY
pxp pxl p x1

If (ATA) is invertible,

8= ATA)1ATY fl(x)=x8

Later: When is (ATA) invertible ?
Recall: Full rank matrices are invertible. What is rank of(ATA) ?

Now: What if (ATA) is invertible but expensive (p very large)?
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Gradient Descent

Even when (ATA) is invertible, might be computationally expensive if A is huge.

N

B =arg mﬁin l(Aﬂ -Y)"(AB-Y) =arg mﬂin J(8)
n

Treat as optimization problem Why? HW3

Observation: J(B) is convex in . How to find the minimizer?

(B, By, Ba)

10

B,




Gradient Descent

Even when (ATA) is invertible, might be computationally expensive if A is huge.
~ 1 .
5 =argmin —(A§ - Y)'(AB-Y) =arg min J(8)
n

Since J(B) is convex, move along negative of gradient

Initialize: 30 step size 1/ | |

= gl—a AT(AB - Y) -

OIfB =ﬁt ,’ T oW % m = m » “;

0J(B)| ¢

Stop: when some criterion met e.g. fixed # iterations, or
op B 21






