# Classification – Bayes optimal classifier

Aarti Singh

Machine Learning 10-315 Aug 28, 2019



## Logistics

- Add yourself to 10-315 on Piazza
- Recitation on Friday Probability review
- Office hours
  - Mon Siddharth 1-2 pm
  - Tues Yue TBA
  - Wed Aarti 9:30-10:30 am outside classroom
  - Thurs Fabricio 11 am-12 noon
- QnA1 to be released TODAY on Canvas

## **Performance Measure**

For a random test data X, measure of closeness between true label Y and prediction f(X)

Binary Classification 
$$Ioss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$$
 **0/1 loss**

Regression 
$$loss(Y, f(X)) = (f(X) - Y)^2$$
 square loss

- ➤ What if overestimating stock price is 10 times more costly than underestimating it?
- ➤ What if missing a tumor is 10 times more costly than falsely detecting it?

## **Performance Measure**

For a random test data X, measure of closeness between true label Y and prediction f(X)

Binary Classification 
$$Ioss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$$
 **0/1 loss**

Regression 
$$loss(Y, f(X)) = (f(X) - Y)^2$$
 square loss

**Density Estimation?** 

# **Unsupervised Learning**

#### **Density/Distribution Estimation**





Bias of a coin

Population density

## **Performance Measure**

For a random test data X, measure of closeness between true label Y and prediction f(X)

Binary Classification 
$$Ioss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$$
 **0/1 loss**

Regression 
$$loss(Y, f(X)) = (f(X) - Y)^2$$
 square loss

Density Estimation 
$$loss(f(X)) = -log(\mathbb{P}_f(X))$$
 Negative log likelihood loss

## **Notion of "Features"**

#### Input $X \in \mathcal{X}$



#### Input $X \in \mathcal{X}$



- How to represent inputs mathematically?
- Document vector X = list of words (different length for each document)

frequency of words (length of each document = size of vocabulary)

- Market information X = daily/monthly? price of share for past
   10 years
- Image X = intensity at each pixel, fourier transform values, SIFT etc.

## Classification

Goal: Construct **prediction rule**  $f: \mathcal{X} \to \mathcal{Y}$ 



Sports
Science
News

Input feature vector, X

Label, Y

In general: label Y can belong to more than two classes

X is multi-dimensional (many features represent an input)

But lets start with a simple case:

label Y is binary (either "Sports" or "Science")

X is frequency of word "play" = count/total length of document

## **Binary Classification**



Model X and Y as random variables with joint distribution P<sub>XY</sub>

Training data  $\{X_i, Y_i\}_{i=1}^n \sim iid (independent)$  and identically distributed) samples from  $P_{XY}$ 

Test data  $\{X,Y\}$  ~ iid sample from  $P_{XY}$ 

Training and test data are independent draws from **same** distribution

## **Binary Classification**



Model X and Y as random variables



For a given X, f(X) = label Y which is more likely

$$f(X) = \arg \max_{Y=y} P(Y=y|X=x)$$

# **Optimal Classifier**

Optimal classifier: 
$$f^*(x) = \arg\max_{Y=y} P(Y=y|X=x)$$
  
Why??

Goal:

Construct **prediction rule**  $f^*: \mathcal{X} \to \mathcal{Y}$  that minimizes loss(Y, f(X)) for a randomly drawn test data (X,Y)

$$\begin{split} & \min_{f} \mathbb{E}_{XY} \left[ \mathsf{loss}(Y, f(X)) \right] \\ &= \min_{f} \mathbb{E}_{XY} [\mathbf{1}_{\{f(X) \neq Y\}}] & \mathsf{O/1 loss} \\ &= \min_{f} \mathbb{P}_{XY} (f(X) \neq Y) & \mathsf{Probability of Error} \end{split}$$

Minimizer is indeed f\*!!

**HW1!** 

## **Error of Optimal Classifier**

Optimal classifier: 
$$f^*(x) = \arg \max_{Y=y} P(Y=y|X=x)$$



 Even the optimal classifier makes mistakes: min probability of error > 0

## **Bayes Optimal Classifier**

Bayes Rule: 
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

To see this, recall:

$$P(X,Y) = P(X|Y) P(Y)$$

$$P(Y,X) = P(Y|X) P(X)$$



**Thomas Bayes** 

## **Bayes Optimal Classifier**

Bayes Rule: 
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y=y|X=x) = \frac{P(X=x|Y=y)P(Y=y)}{P(X=x)}$$

#### **Bayes Optimal classifier:**

$$f^*(x) = \arg\max_{Y=y} P(Y=y|X=x)$$
$$= \arg\max_{Y=y} P(X=x|Y=y)P(Y=y)$$

Class conditional Class probability distribution

## **Bayes Optimal Classifier**



$$f^*(x) = \arg\max_{Y=y} P(X=x|Y=y)P(Y=y)$$

Class conditional Class probability distribution

We can now consider appropriate models for the two terms:

Class probability P(Y=y)

Class conditional distribution of features P(X=x|Y=y)

# Modeling class probability



Modeling Class probability  $P(Y=y) = Bernoulli(\theta)$ 

$$P(Y = \bullet) = \theta$$

$$P(Y = 0) = 1 - \theta$$

Like a coin flip



# Modeling class conditional distribution of features



Modeling Class Conditional distribution of features P(X=x|Y=y)



## 1-dim Gaussian distribution

X is Gaussian  $N(\mu, \sigma^2)$ 

$$P(X = x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$





## d-dim Gaussian distribution

X is Gaussian  $N(\mu, \Sigma)$ 

 $\mu$  is d-dim vector,  $\Sigma$  is dxd dim matrix

$$P(X = x | \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$



# **Gaussian Bayes classifier**

$$f^*(x) = \arg\max_{Y=y} P(X = x | Y = y) P(Y = y)$$

How to learn parameters  $\theta$ ,  $\mu_y$ ,  $\Sigma_y$  from data?

Class conditional density

Gaussian( $\mu_y, \Sigma_y$ )

Class probability



Bernoulli(θ)

$$P(Y = \bullet)P(X = x|Y = \bullet)$$

$$P(Y = \bullet)P(X = x|Y = \bullet)$$
20

# Multi-class problem Multi-dimensional input X

# Handwritten digit recognition



Note: 8 digits shown out of 10 (0, 1, ..., 9);

Axes are obtained by nonlinear dimensionality reduction (later in course)

# Handwritten digit recognition

#### **Training Data:**

Each image represented as a vector of intensity values at the d pixels (features)

Input, X





... n greyscale images 
$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \dots \\ X_d \end{bmatrix}$$

Label, Y

... n labels

#### **Gaussian Bayes model:**

$$P(Y = y) = p_v \text{ for all y in } 0, 1, 2, ..., 9$$

$$P(X=x|Y=y) \sim N(\mu_v, \Sigma_v)$$
 for each y

$$p_0, p_1, ..., p_9$$
 (sum to 1)

$$\mu_y$$
 – d-dim vector

$$\Sigma_{v}$$
 - dxd matrix

# **Gaussian Bayes classifier**



How to learn parameters  $p_y$ ,  $\mu_y$ ,  $\Sigma_y$  from data?

$$P(Y = y) = p_v \text{ for all y in } 0, 1, 2, ..., 9$$

$$P(X=x|Y=y) \sim N(\mu_v, \Sigma_v)$$
 for each y

$$p_0, p_1, ..., p_9$$
 (sum to 1)

$$\mu_v$$
 – d-dim vector

$$\Sigma_{\rm v}$$
 - dxd matrix

# How many parameters do we need to learn?

#### Class probability:

$$P(Y = y) = p_y \text{ for all y in } 0, 1, 2, ..., 9$$

 $p_0, p_1, ..., p_9$  (sum to 1)

K-1 if K labels

Class conditional distribution of features:

$$P(X=x|Y=y) \sim N(\mu_y, \Sigma_y)$$
 for each y

 $\mu_v$  – d-dim vector

 $\Sigma_y$  - dxd matrix

 $Kd + Kd(d+1)/2 = O(Kd^2)$  if d features

Quadratic in dimension d! If d = 256x256 pixels, ~ 21.5 billion parameters!