Classification – Bayes optimal classifier

Aarti Singh

Machine Learning 10-315 Aug 28, 2019

Logistics

- Add yourself to 10-315 on Piazza
- Recitation on Friday Probability review
- Office hours
 - Mon Siddharth 1-2 pm
 - Tues Yue TBA
 - Wed Aarti 9:30-10:30 am outside classroom
 - Thurs Fabricio 11 am-12 noon
- QnA1 to be released TODAY on Canvas

Performance Measure

For a random test data X, measure of closeness between true label Y and prediction f(X)

Binary Classification
$$Ioss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$$
 0/1 loss

Regression
$$loss(Y, f(X)) = (f(X) - Y)^2$$
 square loss

- ➤ What if overestimating stock price is 10 times more costly than underestimating it?
- ➤ What if missing a tumor is 10 times more costly than falsely detecting it?

Performance Measure

For a random test data X, measure of closeness between true label Y and prediction f(X)

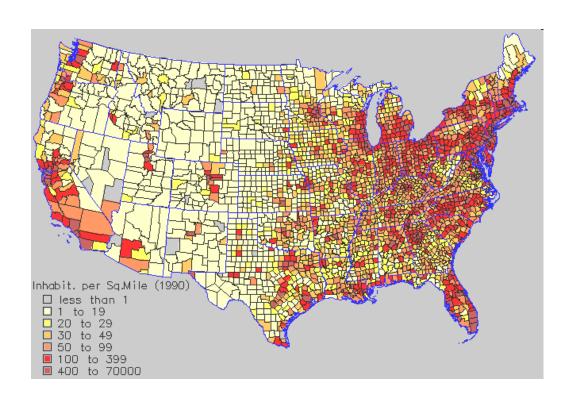
Binary Classification
$$Ioss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$$
 0/1 loss

Regression
$$loss(Y, f(X)) = (f(X) - Y)^2$$
 square loss

Density Estimation?

Unsupervised Learning

Density/Distribution Estimation



Bias of a coin

Population density

Performance Measure

For a random test data X, measure of closeness between true label Y and prediction f(X)

Binary Classification
$$Ioss(Y, f(X)) = 1_{\{f(X) \neq Y\}}$$
 0/1 loss

Regression
$$loss(Y, f(X)) = (f(X) - Y)^2$$
 square loss

Density Estimation
$$loss(f(X)) = -log(\mathbb{P}_f(X))$$
 Negative log likelihood loss

Notion of "Features"

Input $X \in \mathcal{X}$

Input $X \in \mathcal{X}$

- How to represent inputs mathematically?
- Document vector X = list of words (different length for each document)

frequency of words (length of each document = size of vocabulary)

- Market information X = daily/monthly? price of share for past
 10 years
- Image X = intensity at each pixel, fourier transform values, SIFT etc.

Classification

Goal: Construct **prediction rule** $f: \mathcal{X} \to \mathcal{Y}$

Sports
Science
News

Input feature vector, X

Label, Y

In general: label Y can belong to more than two classes

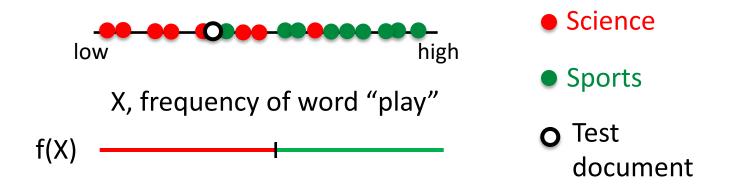
X is multi-dimensional (many features represent an input)

But lets start with a simple case:

label Y is binary (either "Sports" or "Science")

X is frequency of word "play" = count/total length of document

Binary Classification



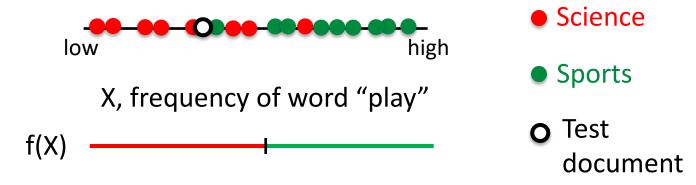
Model X and Y as random variables with joint distribution P_{XY}

Training data $\{X_i, Y_i\}_{i=1}^n \sim iid (independent)$ and identically distributed) samples from P_{XY}

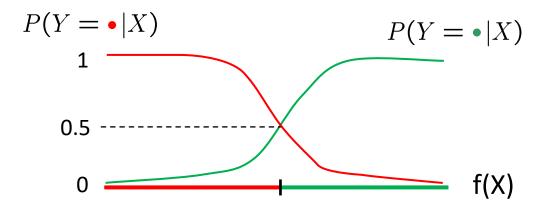
Test data $\{X,Y\}$ ~ iid sample from P_{XY}

Training and test data are independent draws from **same** distribution

Binary Classification



Model X and Y as random variables



For a given X, f(X) = label Y which is more likely

$$f(X) = \arg \max_{Y=y} P(Y=y|X=x)$$

Optimal Classifier

Optimal classifier:
$$f^*(x) = \arg\max_{Y=y} P(Y=y|X=x)$$

Why??

Goal:

Construct **prediction rule** $f^*: \mathcal{X} \to \mathcal{Y}$ that minimizes loss(Y, f(X)) for a randomly drawn test data (X,Y)

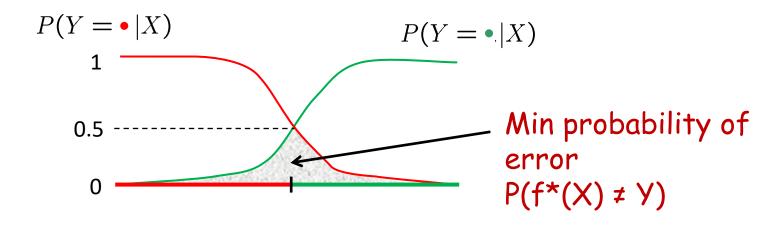
$$\begin{split} & \min_{f} \mathbb{E}_{XY} \left[\mathsf{loss}(Y, f(X)) \right] \\ &= \min_{f} \mathbb{E}_{XY} [\mathbf{1}_{\{f(X) \neq Y\}}] & \mathsf{O/1 loss} \\ &= \min_{f} \mathbb{P}_{XY} (f(X) \neq Y) & \mathsf{Probability of Error} \end{split}$$

Minimizer is indeed f*!!

HW1!

Error of Optimal Classifier

Optimal classifier:
$$f^*(x) = \arg \max_{Y=y} P(Y=y|X=x)$$



 Even the optimal classifier makes mistakes: min probability of error > 0

Bayes Optimal Classifier

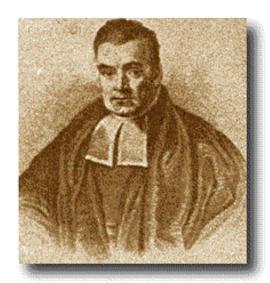
Bayes Rule:
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)}$$

To see this, recall:

$$P(X,Y) = P(X|Y) P(Y)$$

$$P(Y,X) = P(Y|X) P(X)$$



Thomas Bayes

Bayes Optimal Classifier

Bayes Rule:
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

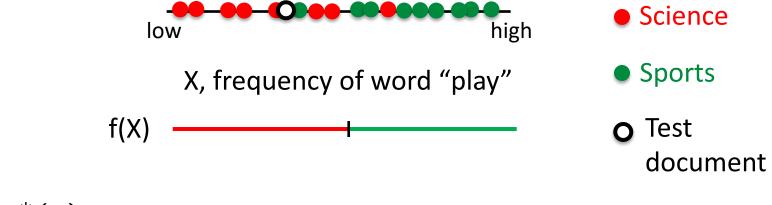
$$P(Y=y|X=x) = \frac{P(X=x|Y=y)P(Y=y)}{P(X=x)}$$

Bayes Optimal classifier:

$$f^*(x) = \arg\max_{Y=y} P(Y=y|X=x)$$
$$= \arg\max_{Y=y} P(X=x|Y=y)P(Y=y)$$

Class conditional Class probability distribution

Bayes Optimal Classifier



$$f^*(x) = \arg\max_{Y=y} P(X=x|Y=y)P(Y=y)$$

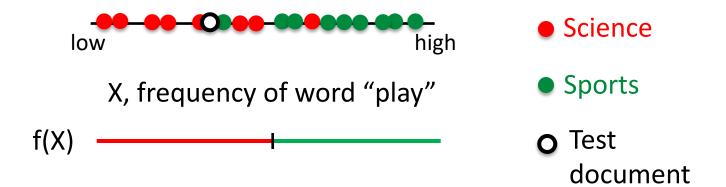
Class conditional Class probability distribution

We can now consider appropriate models for the two terms:

Class probability P(Y=y)

Class conditional distribution of features P(X=x|Y=y)

Modeling class probability



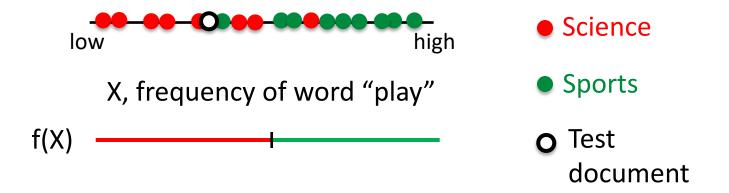
Modeling Class probability $P(Y=y) = Bernoulli(\theta)$

$$P(Y = \bullet) = \theta$$

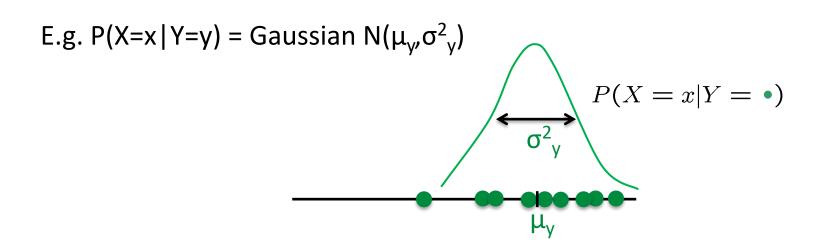
$$P(Y = 0) = 1 - \theta$$

Like a coin flip

Modeling class conditional distribution of features



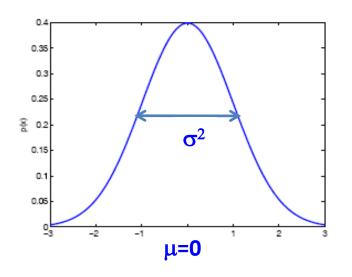
Modeling Class Conditional distribution of features P(X=x|Y=y)

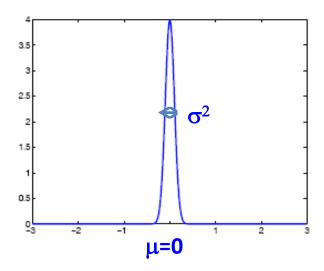


1-dim Gaussian distribution

X is Gaussian $N(\mu, \sigma^2)$

$$P(X = x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$



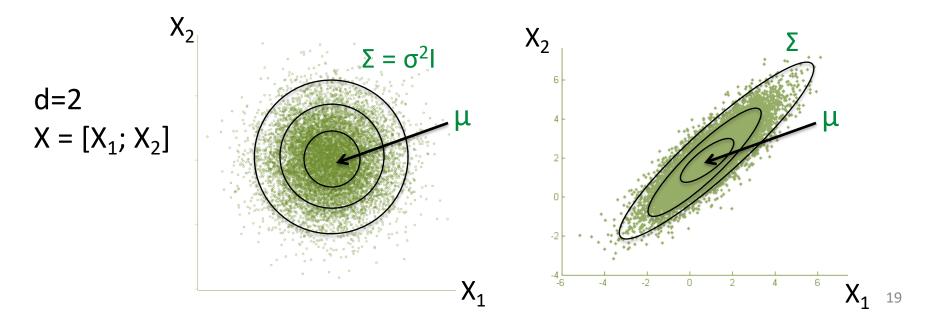


d-dim Gaussian distribution

X is Gaussian $N(\mu, \Sigma)$

 μ is d-dim vector, Σ is dxd dim matrix

$$P(X = x | \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right),$$



Gaussian Bayes classifier

$$f^*(x) = \arg\max_{Y=y} P(X = x | Y = y) P(Y = y)$$

How to learn parameters θ , μ_y , Σ_y from data?

Class conditional density

Gaussian(μ_y, Σ_y)

Class probability

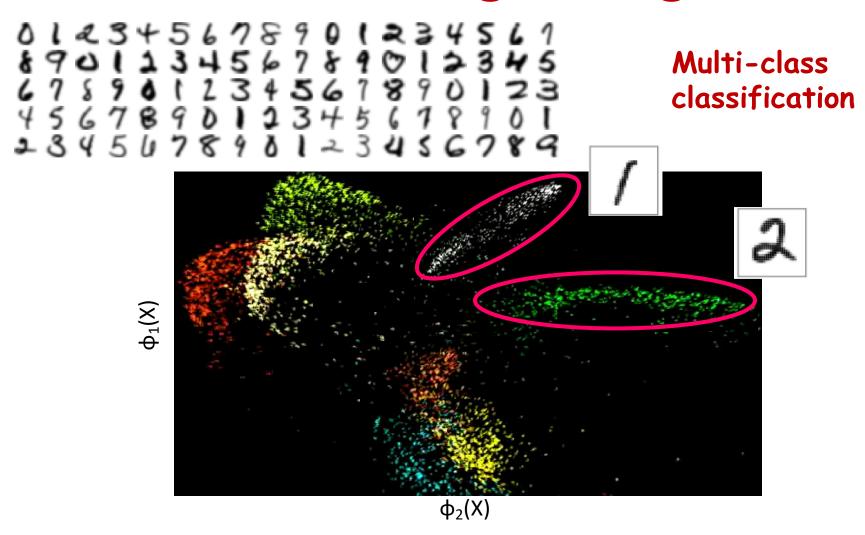
Bernoulli(θ)

$$P(Y = \bullet)P(X = x|Y = \bullet)$$

$$P(Y = \bullet)P(X = x|Y = \bullet)$$
20

Multi-class problem Multi-dimensional input X

Handwritten digit recognition



Note: 8 digits shown out of 10 (0, 1, ..., 9);

Axes are obtained by nonlinear dimensionality reduction (later in course)

Handwritten digit recognition

Training Data:

Each image represented as a vector of intensity values at the d pixels (features)

Input, X

... n greyscale images
$$\mathbf{X} = \begin{bmatrix} X_1 \\ X_2 \\ \dots \\ X_d \end{bmatrix}$$

Label, Y

... n labels

Gaussian Bayes model:

$$P(Y = y) = p_v \text{ for all y in } 0, 1, 2, ..., 9$$

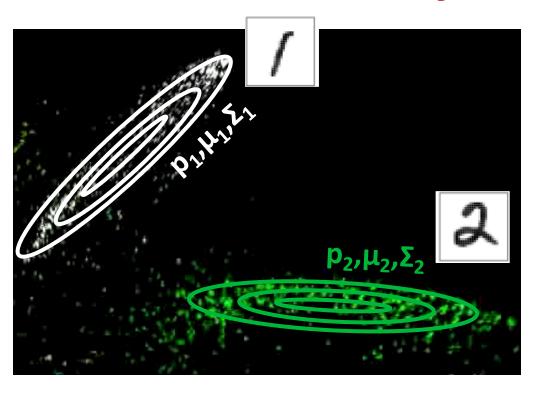
$$P(X=x|Y=y) \sim N(\mu_v, \Sigma_v)$$
 for each y

$$p_0, p_1, ..., p_9$$
 (sum to 1)

$$\mu_y$$
 – d-dim vector

$$\Sigma_{v}$$
 - dxd matrix

Gaussian Bayes classifier



How to learn parameters p_y , μ_y , Σ_y from data?

$$P(Y = y) = p_v \text{ for all y in } 0, 1, 2, ..., 9$$

$$P(X=x|Y=y) \sim N(\mu_v, \Sigma_v)$$
 for each y

$$p_0, p_1, ..., p_9$$
 (sum to 1)

$$\mu_v$$
 – d-dim vector

$$\Sigma_{\rm v}$$
 - dxd matrix

How many parameters do we need to learn?

Class probability:

$$P(Y = y) = p_y \text{ for all y in } 0, 1, 2, ..., 9$$

 $p_0, p_1, ..., p_9$ (sum to 1)

K-1 if K labels

Class conditional distribution of features:

$$P(X=x|Y=y) \sim N(\mu_y, \Sigma_y)$$
 for each y

 μ_v – d-dim vector

 Σ_y - dxd matrix

 $Kd + Kd(d+1)/2 = O(Kd^2)$ if d features

Quadratic in dimension d! If d = 256x256 pixels, ~ 21.5 billion parameters!