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1-dim Gaussian Bayes classifier

f (x) = arg max P(X = alY = y)P(Y =)

Class conditional Class probability

j density \

Gaussian(u,, 0% Bernoulli(B)

P(Y =e¢)P(X =2z|Y =) P(Y = o) P(X = z|Y = o)




d-dim Gaussian Bayes classifier

f(z) = arg max P(X = alY = y)P(Y =)

Class conditional Class probability
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Decision Boundary of Gaussian Bayes

e Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x)

If class conditional feature distribution P(X=x|Y=y) is 2-dim
Gaussian N(u,,2,)
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Note: In general, this implies a quadratic equation in x. But if Z,= Z,, then
guadratic part cancels out and decision boundary is linear. .



Multi-class problem
Multi-dimensional input X



Handwritten digit recognition
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Note: 8 digits shown out of 10 (0, 1, ..., 9);
Axes are obtained by nonlinear dimensionality reduction (later in course)



Handwritten digit recognition

Each image represented as
Training Data: a vector of intensity values

at the d pixels (features)

| e
Input, X f 9\ ... N greyscale | X
images X=1

L Xd -
Label, Y 1 2 ... h labels
Gaussian Bayes model:
P(Y=y)= p,forallyinO,1,2,..9 Pos Py, -+ Pg (SUM tO 1)
P(X=x]Y =y) ~ N(n,2,) for eachy W, — d-dim vector

Zy- dxd matrix




Gaussian Bayes classifier

P(Y=y)= p,forallyinQ,1,2,..,9

P(X=x]Y =y) ~ N(n,2,) for eachy

How to learn parameters
p, W, Z, from data?

Pos Py, -+ Pg (SUM tO 1)

W, — d-dim vector

Zy- dxd matrix




How many parameters do we need to
learn?

Class probability:
P(Y=y)=p,forallyin0,1,2,..,9 Pos Py, - Pg (SUM to 1)
K-1 if K labels

Class conditional distribution of features:

P(X=x]Y =y) ~ N(u,,Z,) for eachy W, — d-dim vector
2, - dxd matrix
Kd + Kd(d+1)/2 = O(Kd?) if d features

Quadratic in dimension d! If d = 256x256
pixels, ~ 21.5 billion parameters! ’



Hand-written digit recognition
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Feature representation:

[> Label, Y

01,2..,9

Grey-scale images — d-dim vector of d pixel intensities
Continuous features

Black-white images — d-dim binary (0/1) vector
Discrete features
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What about discrete features?

Each image represented as a
Training Data: vector of d binary features
(black 1 or white 0)

[ X
Input, X f 9\ ... h black-white  — X;

images
L Xd -
Label, Y 1 2 ... h labels
Discrete Bayes model:
P(Y=y)= p,forallyinO,1,2,..9 Pos Py, -+ Pg (SUM tO 1)

P(X=x|Y =vy) ~ For each label y, maintain probability table with
29-1 entries



How many parameters do we need to
learn?

Class probability:
P(Y=y)=p,forallyin0,1,2,..,9 Pos Py, - Pg (SUM to 1)
K-1 if K labels

Class conditional distribution of features:

P(X=x|Y =vy) ~ For each label y, maintain probability table with
29-1 entries

K(29 - 1) if d binary features

Exponential in dimension d!
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What’s wrong with too many
parameters?

How many training data needed to learn one parameter (bias
of a coin)?

Need lots of training data to learn the parameters!

— Training data > number of parameters
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Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:

— Features are independent given class: e

P(X1,Xo|Y) = P(X1]|X2,Y)P(X5|Y)
= P(X41|Y)P(X2|Y)

— More generally:

d X =

P(X1..X4lY) = ]| P(X3]Y)
=1

If conditional independence assumption holds, NB is
optimal classifier! But worse otherwise.

|

X1
X
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Conditional Independence

e Xis conditionally independent of Y given Z:

probability distribution governing X is independent of the value
of Y, given the value of Z

(Ve,y,2)P(X =z|]Y =y, Z =2) = P(X =z|Z = 2)

e Equivalent to:
P(X,Y | 2Z)=P(X | 2)P(Y | 2)

* e.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
Note: does NOT mean Thunder is independent of Rain
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Conditional vs. Marginal Independence

London taxi drivers: A survey has pointed out a positive and
significant correlation between the number of accidents and wearing
coats. They concluded that coats could hinder movements of drivers and
be the cause of accidents. A new law was prepared to prohibit drivers

from wearing coats when driving.

Finally another study pointed out that people wear coats when it rains...

Wearing coats is independent of accidents conditioning on
the fact that it rained
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Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:
— Features are independent given class:

d
P(X1..X4|Y) = ]| P(X3]Y)
i=1
fvp(x) = argmax P(zy,...,zq|y)P(y)
d
= arg mngH P(xz;|ly)P(y)
i=1

How many parameters now?
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Handwritten digit recognition
(continuous features)

Training Data: D

. ..ngreyscale
X — | A2 [ | ;! images with
_ Xd | | | d pixels
Y 1 2 ... n labels

How many parameters?
. . May not
Class probability P(Y =y) =p forally K-1if K labels

Class conditional distribution of features (using Naive Bayes
assumption)

P(X,=x,]Y =y) ~ N(u¥, 02 W) for each y and each pixel i 2Kd

Linear instead of Quadratic in d! 18



Independent Gaussians

Equivalent to
assuming

T 20
2

Ey _ 0 0.2(9)
0 0

2 with zero off-
: X
diagonals 2

0 0 |
0 0
O O.Czl(y) |

> with non-zero off-
diagonals . .




Handwritten digit recognition
(discrete features)

Training Data: X, ] ... n black-white (1/0)
w _ | X2 [ ; ! images with
B d pixels
Y, 1 2 ... h labels

How many parameters?
. . May not
Class probability P(Y =y) =p forally K-1if K labels

Class conditional distribution of features (using Naive Bayes
assumption)

P(X. = x.|Y =y) — one probability value for each y, pixel i Kd

Linear instead of Exponential in d! 20



Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:
— Features are independent given class:

d
P(X1..X4|Y) = ]| P(X3]Y)
i=1
fvp(x) = argmax P(zy,...,zq|y)P(y)
d
= arg m&axH P(xz;|ly)P(y)
i=1

Has fewer parameters, and hence requires fewer training
data, even though assumption may be violated in practice

21



How to learn parameters from data?
MLE, MAP

(Discrete case)



Learning parameters in distributions
P(Y =@)=06 P(Yy =@)=1-6

Learning 0 is equivalent to learning probability of head in coin flip.

How do you learn that?

Answer: 3/5

Why??
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Bernoulli distribution

 P(Heads) =0, P(Tails)=1-0

* Flipsarei.i.d.:
— Independent events
— Identically distributed according to Bernoulli distribution

Choose 0 that maximizes the probability of observed data
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Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data (aka
likelihood)

Ot = arg max P(D | 6)

MLE of probability of head:

oy
apg + ar

OviLE = =3/5

"Frequency of heads”
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Multinomial distribution

Data, D =rolls of a dice ( .

¢ P(l) = Py, P(Z) = Py o) P(6) = Pe PiF....¥Pg =

* Rolls arei.i.d.:
— Independent events

— ldentically distributed according to Multinomial(0)
distribution where 0 = {p, Py, ..., Pg}

Choose 0 that maximizes the probability of observed data

26



Maximum Likelihood Estimation (MLE)

Choose 0 that maximizes the probability of observed data

Ot = arg max P(D | 6)

MLE of probability of rolls:
Orvite = D1,MLE,---;P6 MLE

Oéy «—— Rolls that turnup y

Py MLE —
Zy Xy <— Total number of rolls

"Frequency of roll y* 7



Back to Naive Bayes



Naive Bayes with discrete features

Each image represented as a
Training Data: vector of d binary features
(black 1 or white 0)

[ X
Input, X f 9\ ... h black-white  — X;

images
L Xd -
Label, Y 1 2 ... h labels
Discrete Naive Bayes model:
P(Y=y)=p,forallyin0,1,2,..9 Pos Py, -+ Pg (SUM tO 1)

P(Xi=x,|Y =y) - one probability value for each vy, pixel i
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Naive Bayes Algo — Discrete features

e Training Data {(XU),y(W)n_, x@ = xW . x{)y

e Maximum Likelihood Estimates
— For Class probability

— For class conditional distribution

P(y) {#j Y0 =y}/n

* NB Prediction fortestdata X = (z1,...,xy4)

P($z7y)
Y = P
e max ( )@1;[1 P(y) 30




Issues with Naive Bayes

Issue 1: Usually, features are not conditionally independent:
P(X1..X4)Y) # [[ P(Xi|Y)
1

Nonetheless, NB is the single most used classifier particularly

when data is limited, works well

Issue 2: Typically use MAP estimates instead of MLE since
insufficient data may cause MLE to be zero.
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Insufficient data for MLE

What if you never see a training instance where X,;=a when
Y=b?

— e.g., b={SpamEmail}, a ={’Earn’}

— P(X;=a|Y=b)=0

Thus, no matter what the values X,, ..., X, take:

I
o

. A, d
P(X1 =a,X.Xn|Y) =P(X1 =alY) [[ P(X;]Y)

1=2

What now???
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