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1-dim Gaussian Bayes classifier 
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Class conditional  
density 

Class probability 

Bernoulli(θ) Gaussian(μy, σ
2

y) 



d-dim Gaussian Bayes classifier 
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Class conditional  
density 

Class probability 

Bernoulli(θ) 

Decision Boundary 

Gaussian(μy,Σy) 
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• Decision boundary is set of points x: P(Y=1|X=x) = P(Y=0|X=x) 
 

If class conditional feature distribution P(X=x|Y=y) is 2-dim 
Gaussian N(μy,Σy) 

Decision Boundary of Gaussian Bayes 

Note: In general, this implies a quadratic equation in x. But if Σ1= Σ0, then 
quadratic part cancels out and decision boundary is linear. 



Multi-class problem 
Multi-dimensional input X 
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Handwritten digit recognition 
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Note: 8 digits shown out of 10 (0, 1, …, 9);  
           Axes are obtained by nonlinear dimensionality reduction (later in course) 

φ2(X) 

φ
1
(X

) 
Multi-class 
classification 



Handwritten digit recognition 
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Training Data: 

 

 

 

 

 

 

Gaussian Bayes model: 

 

 

 

 
 

P(Y = y) = py for all y in 0, 1, 2, …, 9             p0, p1, …, p9 (sum to 1) 

P(X=x|Y = y) ~ N(μy,Σy) for each y                μy
 – d-dim vector 

                 Σy
 - dxd matrix 

1 

… n greyscale    
    images 

… n labels 

Input, X 

Label, Y 

Each image represented as 
a vector of intensity values 
at the d pixels (features) 

2 

X 



Gaussian Bayes classifier 

8 

P(Y = y) = py for all y in 0, 1, 2, …, 9             p0, p1, …, p9 (sum to 1) 

P(X=x|Y = y) ~ N(μy,Σy) for each y                μy
 – d-dim vector 

                 Σy
 - dxd matrix 

How to learn parameters 
py, μy, Σy from data?  



How many parameters do we need to 
learn? 
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Kd + Kd(d+1)/2 = O(Kd2)  if d features 

Quadratic in dimension d!  If d = 256x256 
pixels, ~ 21.5 billion parameters! 

Class probability: 

P(Y = y) = py for all y in 0, 1, 2, …, 9             p0, p1, …, p9 (sum to 1) 

 

 

Class conditional distribution of features: 

P(X=x|Y = y) ~ N(μy,Σy) for each y                μy
 – d-dim vector 

                 Σy
 - dxd matrix 

K-1 if K labels 



Hand-written digit recognition 

10 

0, 1, 2, …, 9 

Input, X (images of hand-written digits) Label, Y 

Feature representation: 
 

Grey-scale images – d-dim vector of d pixel intensities 
 
 
Black-white images – d-dim binary (0/1) vector 
 

Continuous features 

Discrete features 



What about discrete features? 
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Training Data: 

 

 

 

 

 

 

Discrete Bayes model: 

 

 

 

 
 

P(Y = y) = py for all y in 0, 1, 2, …, 9             p0, p1, …, p9 (sum to 1) 

P(X=x|Y = y) ~ For each label y, maintain probability table with 
  2d-1 entries  

1 

… n black-white    
    images 

… n labels 

Input, X 

Label, Y 

Each image represented as a 
vector of d binary features 
(black 1 or white 0) 

2 

X 



How many parameters do we need to 
learn? 
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Class probability: 

P(Y = y) = py for all y in 0, 1, 2, …, 9             p0, p1, …, p9 (sum to 1) 

 

 

Class conditional distribution of features: 

P(X=x|Y = y) ~ For each label y, maintain probability table with 
  2d-1 entries  

K-1 if K labels 

K(2d – 1) if d binary features 

Exponential in dimension d! 



What’s wrong with too many 
parameters? 

• How many training data needed to learn one parameter (bias 
of a coin)? 

 

 

 

 

 

 

• Need lots of training data to learn the parameters!  

– Training data > number of parameters 
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Naïve Bayes Classifier 
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• Bayes Classifier with additional “naïve” assumption: 

– Features are independent given class: 

 

 

 

 

– More generally: 

 

 

• If conditional independence assumption holds, NB is 
optimal classifier! But worse otherwise. 



Conditional Independence 
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• X is conditionally independent of Y given Z: 

    probability distribution governing X is independent of the value 
of Y, given the value of Z 

 

 

• Equivalent to: 
 

 

• e.g., 

      Note: does NOT mean Thunder is independent of Rain 
 



Conditional vs. Marginal Independence 

16 

Wearing coats is independent of accidents conditioning on 
the fact that it rained 



Naïve Bayes Classifier 
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• Bayes Classifier with additional “naïve” assumption: 

– Features are independent given class: 

 

 

 

 

 

 

 

 

• How many parameters now?  



Handwritten digit recognition 
(continuous features) 
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Training Data:  

 

 

 

 

How many parameters? 

Class probability P(Y = y) =py for all y   

Class conditional distribution of features (using Naïve Bayes 
assumption)  

P(Xi = xi|Y = y) ~ N(μ(y)
i, σ

2
i 

(y)) for each y and each pixel i  

K-1 if K labels 

2Kd  

1 2 

… n greyscale  
    images with   
    d pixels 

… n labels 

X 

Y 

May not 
hold 

Linear instead of Quadratic in d! 



Independent Gaussians 
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μ 
 

Σ with non-zero off-
diagonals 
 

Σ with zero off-
diagonals 
 d=2 

X = [X1; X2] 

X1 

X2 

X1 

X2 

μ 
 

Equivalent to 
assuming 



Handwritten digit recognition 
(discrete features) 
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Training Data:  

 

 

 

 

How many parameters? 

Class probability P(Y = y) =py for all y   

Class conditional distribution of features (using Naïve Bayes 
assumption)  

P(Xi = xi|Y = y) – one probability value for each y, pixel i  

K-1 if K labels 

Kd  

1 2 

… n black-white (1/0) 
    images with   
    d pixels 

… n labels 

X 

Y 

May not 
hold 

Linear instead of Exponential in d! 



Naïve Bayes Classifier 
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• Bayes Classifier with additional “naïve” assumption: 

– Features are independent given class: 

 

 

 

 

 

 

 

• Has fewer parameters, and hence requires fewer training 
data, even though assumption may be violated in practice 



How to learn parameters from data? 
MLE, MAP 

 
(Discrete case) 
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Learning parameters in distributions 
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=   = 1 -   

Learning θ is equivalent to learning probability of head in coin flip.  
 
How do you learn that? 
 
 
Data =  
 
 
Answer: 3/5 
 
Why?? 



Bernoulli distribution 
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     Data, D = 

 

 

• P(Heads) = ,  P(Tails) = 1- 
 

• Flips are i.i.d.: 
– Independent events 

– Identically distributed according to Bernoulli distribution 

 

Choose  that maximizes the probability of observed data 



Maximum Likelihood Estimation (MLE) 

Choose  that maximizes the probability of observed data (aka 
likelihood) 

 

 

 

 

MLE of probability of head: 
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= 3/5 

“Frequency of heads” 



Multinomial distribution 

26 

 
     Data, D = rolls of a dice 

 
 

• P(1) = p1,  P(2) = p2, …, P(6) = p6 p1+….+p6 = 1 
 

• Rolls are i.i.d.: 
– Independent events 

– Identically distributed according to Multinomial() 
distribution where  

 

Choose  that maximizes the probability of observed data 

 = {p1, p2, … , p6} 



Choose  that maximizes the probability of observed data 

 

 

 

MLE of probability of rolls: 

 

27 “Frequency of roll y” 

Rolls that turn up y 

Total number of rolls 

Maximum Likelihood Estimation (MLE) 



Back to Naïve Bayes 
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Naïve Bayes with discrete features 
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Training Data: 

 

 

 

 

 

 

Discrete Naïve Bayes model: 

 

 

 

 
 

P(Y = y) = py for all y in 0, 1, 2, …, 9             p0, p1, …, p9 (sum to 1) 

P(Xi=xi|Y = y) - one probability value for each y, pixel i 

1 

… n black-white    
    images 

… n labels 

Input, X 

Label, Y 

Each image represented as a 
vector of d binary features 
(black 1 or white 0) 

2 

X 



Naïve Bayes Algo – Discrete features 

• Training Data 

• Maximum Likelihood Estimates 

– For Class probability  
 

– For class conditional distribution 
 
 

 

• NB Prediction for test data 
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Issues with Naïve Bayes 
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• Issue 1: Usually, features are not conditionally independent: 

 

 

     Nonetheless, NB is the single most used classifier particularly     

     when data is limited, works well 

 

• Issue 2: Typically use MAP estimates instead of MLE since 
insufficient data may cause MLE to be zero. 



Insufficient data for MLE 
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• What if you never see a training instance where X1=a when 
Y=b? 

– e.g., b={SpamEmail}, a ={‘Earn’} 

– P(X1= a | Y = b) = 0 

• Thus, no matter what the values X2,…,Xd take: 

 

 

 

• What now??? 

 

= 0 


