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Neural Networks to learnf: X 2 Y

* fcan be anon-linear function
» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of logistic/sigmoid
units:
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Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —

Start from input layer
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: o(x) = o(wg+ Z W;T;)
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Training Neural Networks - 12 loss

Train weights of all units to minimize sum of squared errors of

predicted network outputs

W —argmin W]

| TN Learned neural
W « arg mMI/n zl:(y f(x )) network
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Where f(xl) — o(xl) , output of neural network for training point x!

Minimize using Gradient Descent

For Neural Networks,
E[w] no longer convex in w

/Gra,dient

Training rule:
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Gradient Descent for 1 sigmoid unit
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Gradient of the sigmoid function
output wrt its input

0o do Onet
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Gradient of the sigmoid unit
output wrt input weights



Gradient Descent for 1 hidden layer
1 output NN
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Backpropagation Algorithm (MLE) head hid 4 whod hood
using Stochastic gradient descent

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network

and compute the network outputs > Using Forward propagation
2. For each output unit k | = training examp|e
o < oi(1 — ok)(y! — o}) y, = target output (label)

3. For each hidden unit h of output unit k

Oy = unit output
(obtained by forward
propagation)

5[!, — Ollz(]- - 0}1) > wh.kdl!'
k€outputs '
4. Update each network weight w; ;
Wi — wi; + szl] w; = wt fromii to j
where Note: if i is input variable,

| [ 1 —
Aw,f?]‘ = 775j01ﬁ‘ 0; = X;



More on Backpropagation

e Gradient descent over entire network weight Objective/Error no
vector longer convex in
weights

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Often include weight momentum o
Aw;j(n) = nd;zi;+ alw;j(n — 1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast



Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].





