Neural Networks (recap)

Aarti Singh

Machine Learning 10-315
Sept 18, 2019

ACHI

Neural Networks to learnf: X 2 Y

* fcan be anon-linear function
» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of logistic/sigmoid
units:

 Output layer, Y

KN]
— _
e
RS
> <

Hidden layer, H

Prediction using Neural Networks

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —

Start from input layer
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: o(x) = o(wg+ Z W;T;)
)

1-Hidden layer, O(X) = o | wgo -+ Z wha(’wg + Z ’w?’%)
1 output NN: h | 7 J

\ Op,]

Training Neural Networks - 12 loss

Train weights of all units to minimize sum of squared errors of

predicted network outputs

W —argmin W]

| TN Learned neural
W « arg mMI/n zl:(y f(x)) network

l

Where f(xl) — o(xl) , output of neural network for training point x!

Minimize using Gradient Descent

For Neural Networks,
E[w] no longer convex in w

/Gra,dient

Training rule:

V|

1.e.,

_

—

w)

OF OF
Owy’ Ow,’

AT = —nV E[]

A

OF
YT g,

OE]

ow,,

-

Gradient Descent for 1 sigmoid unit

>

() i

ner =2 w: x; |
=0 11

o = G(net) = ey
l+e

dol)
810,7

OE 0 12“_)y
8w,7_8w,t21_ez)y ¢ =§(y|—ol)(—

9() _ (net)(1 - o (net)) = o(1 — o)

Gradient of the sigmoid function
output wrt its input

0o do Onet

Ow; ~ Onet’ Ow; = o(l —o)z;

Gradient of the sigmoid unit
output wrt input weights

Gradient Descent for 1 hidden layer
1 output NN

Vi

s Cwar Zep0y) s(% o)

O =
¢ A v 4.
(‘::.L\ = 13“(Ldf + Z(J\)({“XL> s 5'(—2(':(10'1 7’\>
BE 8 1 60| '
— oy (yl=ol)? — | B
ow; Ow; 2 J_ED(y) %(y ol) ow;
do
Gradient of the output with = 0(1 — O)Oh
ow;
respect to wy,
do

Gradient of the output with

——— = 0o(1 — o0)op (1 — op) wpx;
respect to input weights wh, &w@h () () ?

Backpropagation Algorithm (MLE) head hid 4 whod hood
using Stochastic gradient descent

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network

and compute the network outputs > Using Forward propagation
2. For each output unit k | = training examp|e
o < oi(1 — ok)(y! — o}) y, = target output (label)

3. For each hidden unit h of output unit k

Oy = unit output
(obtained by forward
propagation)

5[!, — Ollz(]- - 0}1) > wh.kdl!'
k€outputs '
4. Update each network weight w; ;
Wi — wi; + szl] w; = wt fromii to j
where Note: if i is input variable,

| [1 —
Aw,f?]‘ = 775j01ﬁ‘ 0; = X;

More on Backpropagation

e Gradient descent over entire network weight Objective/Error no
vector longer convex in
weights

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Often include weight momentum o
Aw;j(n) = nd;zi;+ alw;j(n — 1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].

