
10-315: Introduction to Machine
Learning  
Fall2019

Devendra Singh Chaplot

Machine Learning Department
chaplot@cs.cmu.edu

Training Neural Networks

mailto:rsalakhu@cs.cmu.edu

Used Resources

• Some tutorial slides were borrowed from Rob Fergus’ CIFAR tutorial
on ConvNets:
https://sites.google.com/site/deeplearningsummerschool2016/speakers

• Disclaimer: Much of the material in this lecture was borrowed
from Russ Salakhutdinov’s class on Deep Learning (10-807)

• Some slides were borrowed from Marc'Aurelio Ranzato’s CVPR
2014 tutorial on Convolutional Nets
https://sites.google.com/site/lsvrtutorialcvpr14/home/deeplearning

• Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

Feedforward Neural Networks

Stochastic Gradient Descent
• Perform updates after seeing each example:
- Initialize:
- For t=1:T
- for each training example

Training epoch
=

Iteration of all examples

• To train a neural net, we need:

➢ Loss function:
➢ Compute gradients:

Model Selection
• Training Protocol:

- Train your model on the Training Set

- For model selection, use Validation Set
➢ Hyper-parameter search: hidden layer size, learning rate,
number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set

• Remember: Generalization is the behavior of the model on
unseen examples.

Early Stopping
• To select the number of epochs, stop training when validation set
error increases (with some look ahead).

Mini-batch, Momentum
• Make updates based on a mini-batch of examples (instead of a
single example):

➢ the gradient is the average regularized loss for that mini-batch
➢ can give a more accurate estimate of the gradient
➢ can leverage matrix/matrix operations, which are more efficient

• Momentum: Can use an exponential average of previous
gradients:

➢ can get pass plateaus more quickly, by ‘‘gaining momentum’’

Adapting Learning Rates
• Updates with adaptive learning rates (“one learning rate per
parameter”)

➢ Adagrad: learning rates are scaled by the square root of the
cumulative sum of squared gradients

➢ RMSProp: instead of cumulative sum, use exponential moving
average

➢ Adam: essentially combines
RMSProp with momentum

Why Training is Hard
• First hypothesis: Hard optimization
problem (underfitting)

➢ vanishing gradient problem
➢ saturated units block gradient

propagation
➢ neural network does not have

enough capacity

• Vanishing gradient: This is a well
known problem in recurrent neural
networks

Why Training is Hard
• Second hypothesis: Overfitting

➢ we are exploring a space of complex functions
➢ deep nets usually have lots of parameters

• Might be in a high variance / low bias situation

Why Training is Hard
• First hypothesis (underfitting): better optimize

➢ Increase the capacity of the neural network
➢ Tune learning rate
➢ Check gradients

• Second hypothesis (overfitting): use better regularization

➢ Dropout
➢ Data augmentation

• For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Dropout
• Key idea: Cripple neural network by removing hidden units
stochastically

➢ each hidden unit is set to 0 with
probability 0.5

➢ hidden units cannot co-adapt to
other units

➢ hidden units must be more generally
useful

• Could use a different dropout
probability, but 0.5 usually works well

Dropout at Test Time
• At test time, we replace the masks by their expectation

➢ This is simply the constant vector 0.5 if dropout probability is 0.5
➢ For single hidden layer: equivalent to taking the geometric average

of all neural networks, with all possible binary masks

• Beats regular backpropagation on many datasets

• Ensemble: Can be viewed as a geometric average of exponential
number of networks.

Why Training is Hard
• First hypothesis (underfitting): better optimize

➢ Increase the capacity of the neural network
➢ Tune learning rate
➢ Check gradients

• Second hypothesis (overfitting): use better regularization

➢ Dropout
➢ Data augmentation

• For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Invariance by Data Augmentation

• Translation invariances built-in in convolutional network:
➢ due to convolution and max pooling

• It is not invariant to other important variations such as rotations
and scale changes

• However, it’s easy to artificially generate data with such
transformations

➢ could use such data as additional training data
➢ neural network can potentially learn to be invariant to such

transformations

Generating Additional Examples

Elastic Distortions
• Can add ‘‘elastic’’ deformations (useful in character recognition)

• We can do this by applying a ‘‘distortion field’’ to the image

➢ a distortion field specifies where to displace each pixel value

Bishop’s book

Elastic Distortions
• Can add ‘‘elastic’’ deformations (useful in character recognition)

• We can do this by applying a ‘‘distortion field’’ to the image

➢ a distortion field specifies where to displace each pixel value

Bishop’s book

Elastic Distortions
• Can add ‘‘elastic’’ deformations (useful in character recognition)

• We can do this by applying a ‘‘distortion field’’ to the image

➢ a distortion field specifies where to displace each pixel value

Bishop’s book

Why Training is Hard
• First hypothesis (underfitting): better optimize

➢ Increase the capacity of the neural network
➢ Tune learning rate
➢ Check gradients

• Second hypothesis (overfitting): use better regularization

➢ Dropout
➢ Data augmentation

• For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Optimization Tricks
• Pick learning rate by running on a subset of the data

➢ Start with large learning rate & divide by 2 until loss does not diverge
➢ Decay learning rate by a factor of ~100 or more by the end of training

• Initialize parameters so that each feature across layers has
similar variance. Avoid units in saturation.

• Tune the capacity of the neural network
• Number of layers
• Number of neurons per layer

Initialization
• Initialize biases to 0
• For weights
- Can not initialize weights to 0 with tanh activation

➢ All gradients would be zero (saddle point)

- Can not initialize all weights to the same value
➢ All hidden units in a layer will always behave the same
➢ Need to break symmetry

- Sample from , where

Size of

Sample around 0 and
break symmetry

Choosing the Architecture
• Task dependent

• Cross-validation

• For image-based tasks:
[Convolution → pooling]* + fully connected layer

• The more data: the more layers and the more neurons per layer

• Computational resources

Visualization
• Check weight and gradient norms

• Visualize features (feature maps need to be uncorrelated) and
have high variance

• Good training: hidden units
are sparse across samples

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

Visualization

• Bad training: many hidden
units ignore the input and/or
exhibit strong correlations

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

• Check weight and gradient norms

• Visualize features (feature maps need to be uncorrelated) and
have high variance

Visualization
• Check weight and gradient norms

• Visualize features (feature maps need to be uncorrelated) and
have high variance

• Visualize parameters: learned filters should exhibit structure and
should be uncorrelated

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

Visualization
• Check weight and gradient norms

• Visualize features (feature maps need to be uncorrelated) and
have high variance

• Visualize parameters: learned filters should exhibit structure and
should be uncorrelated

• Measure error on both training and validation set

• Test on a small subset of the data and check the error → 0.

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

When it does not work

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]

• Training diverges:
➢ Learning rate may be too large → decrease learning rate

• Parameters collapse / loss is minimized but accuracy is low
➢ Check loss function: Is it appropriate for the task you want to solve?
➢ Does it have degenerate solutions?

• Network is underperforming
➢ Compute flops and nr. params. → if too small, make net larger
➢ Visualize hidden units/params → fix optimization

• Network is too slow
➢ GPU, distrib. framework, make net smaller

Conv Nets: Examples
• Optical Character Recognition, House Number and Traffic Sign
classification

Conv Nets: Examples
• Pedestrian detection

Sermanet et al. “Pedestrian detection with unsupervised multi-stage..” CVPR 2013

Conv Nets: Examples
• Object Detection

Sermanet et al. “OverFeat: Integrated recognition, localization” arxiv 2013
Girshick et al. “Rich feature hierarchies for accurate object detection” arxiv 2013
Szegedy et al. “DNN for object detection” NIPS 2013

ImageNet Dataset
• 1.2 million images, 1000 classes

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009

Examples of Hammer

Important Breakthroughs
• Deep Convolutional Nets for Vision (Supervised)

Krizhevsky, A., Sutskever, I. and Hinton, G. E., ImageNet Classification with
Deep Convolutional Neural Networks, NIPS, 2012.

1.2 million training images
1000 classes

Architecture
• How can we select the right architecture:

➢ Manual tuning of features is now replaced with the manual tuning

of architechtures

• Depth

• Width

• Parameter count

How to Choose Architecture
• Many hyper-parameters:

➢ Number of layers, number of feature maps

• Cross Validation

• Grid Search (need lots of GPUs)

• Smarter Strategies

➢ Random search
➢ Bayesian Optimization

AlexNet
• 8 layers total

• Trained on Imagenet 
dataset [Deng et al. CVPR’09]

• 18.2% top-5 error

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet
• Remove top fully connected layer 7

• Drop ~16 million parameters

• Only 1.1% drop in performance!

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

[From Rob Fergus’ CIFAR 2016 tutorial]

AlexNet
• Let us remove upper feature extractor layers
and fully connected:

• Drop ~50 million parameters

• 33.5 drop in performance!

• Depth of the network is the key.

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

➢ Layers 3,4, 6 and 7

[From Rob Fergus’ CIFAR 2016 tutorial]

GoogLeNet

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

Convolution
Pooling
Softmax
Other

• 24 layer model that uses so-called inception
module.

GoogLeNet

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

• GoogLeNet inception module:

➢ Multiple filter scales at each layer
➢ Dimensionality reduction to keep computational requirements down

1x1
number
of filters

3x3

5x5

GoogLeNet

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

• Width of inception modules ranges from 256 filters (in early modules) to
1024 in top inception modules.

• Can remove fully connected layers on top completely

• Number of parameters is reduced to 5 million

• 6.7% top-5 validation error on Imagnet

Residual Networks

[He, Zhang, Ren, Sun, CVPR 2016]

Really, really deep convnets do not train well,  
E.g. CIFAR10:

Key idea: introduce “pass
through” into each layer

Thus only residual now
needs to be learned

With ensembling, 3.57% top-5
test error on ImageNet

