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Used Resources

e Disclaimer: Much of the material in this lecture was borrowed
from Russ Salakhutdinov’s class on Deep Learning (10-807)

e Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

e Some tutorial slides were borrowed from Rob Fergus’ CIFAR tutorial
on ConvNets:
https://sites.google.com/site/deeplearningsummerschool2016/speakers

e Some slides were borrowed from Marc'Aurelio Ranzato’'s CVPR

2014 tutorial on Convolutional Nets
https://sites.google.com/site/lsvrtutorialcvpr14/home/deeplearning



Feedforward Neural Networks




Stochastic Gradient Descent

e Perform updates after seeing each example:
— Initialize: g = (W b WD plL+h)y
- For t=1:T
- for each training example (x{*, ") ~

/

Training epoch

A = _Veg(ﬂx(t);9)1,‘”(:)) -
8 — 0+ Iteration of all examples

e To train a neural net, we need:

> Loss function: 1(f(x'");8),y")
> Compute gradients: VGZ(f(X(*);g)?y(t))

l(f(x)’ y) = 2:._— 1(y=-f-3 log f(x)c = log f(x)'y



Model Selection

e Training Protocol:

— Train your model on the Training Set Ptrain

— For model selection, use Validation Set valid

> Hyper-parameter search: hidden layer size, learning rate,
number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set Dtest

e Remember: Generalization is the behavior of the model on
unseen examples.



Early Stopping

» To select the number of epochs, stop training when validation set
error increases (with some look ahead).
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Mini-batch, Momentum

» Make updates based on a mini-batch of examples (instead of a
single example):
> the gradient is the average regularized loss for that mini-batch
> can give a more accurate estimate of the gradient

> can leverage matrix/matrix operations, which are more efficient

« Momentum: Can use an exponential average of previous

gradients:

vg) = Vgl(f(x(t))’y(t,)) n ﬁ,gvg_l)

> can get pass plateaus more quickly, by “gaining momentum”



Adapting Learning Rates

» Updates with adaptive learning rates (“one learning rate per
parameter”)

> Adagrad: learning rates are scaled by the square root of the
cumulative sum of squared gradients

. 2 —) _ Vl(f(x®),y®)
A8 = A1) (V@Z(f(x(t))ay(t))) Vo' = VD T e

> RMSProp: instead of cumulative sum, use exponential moving
average

~®) = g1 4 (1—0) (Vel(f(x(t))ay(t)>>2
=) V@l(f(X(t))ay(t))

. . - Vo =
> Adam: essentially combines 0 [/~ (1)
RMSProp with momentum e



Why Training is Hard

e First hypothesis: Hard optimization
problem (underfitting)

> vanishing gradient problem

> saturated units block gradient
propagation

> neural network does not have

enough capacity

 Vanishing gradient: This is a well
known problem in recurrent neural
networks




Why Training is Hard

e Second hypothesis: Overfitting

> we are exploring a space of complex functions

> deep nets usually have lots of parameters

e Might be in a high variance / low bias situation
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Why Training is Hard
e First hypothesis (underfitting): better optimize

> Increase the capacity of the neural network
> Tune learning rate

> Check gradients

» Second hypothesis (overfitting): use better regularization

> Dropout ‘

> Data augmentation

» For many large-scale practical problems, you will need to use both:
better optimization and better regularization!



Dropout

e Key idea: Cripple neural network by removing hidden units
stochastically

> each hidden unit is set to 0 with
probability 0.5

> hidden units cannot co-adapt to

other units
_ . w2
> hidden units must be more generally
useful h(" (x)

e Could use a different dropout
probability, but 0.5 usually works well




Dropout at Test Time

* At test time, we replace the masks by their expectation

> This is simply the constant vector 0.5 if dropout probability is 0.5
> For single hidden layer: equivalent to taking the geometric average

of all neural networks, with all possible binary masks

» Beats regular backpropagation on many datasets

 Ensemble: Can be viewed as a geometric average of exponential
number of networks.



Why Training is Hard
e First hypothesis (underfitting): better optimize

> Increase the capacity of the neural network
> Tune learning rate

> Check gradients

» Second hypothesis (overfitting): use better regularization

> Dropout

> Data augmentation ‘

» For many large-scale practical problems, you will need to use both:
better optimization and better regularization!



Invariance by Data Augmentation

e Translation invariances built-in in convolutional network:

> due to convolution and max pooling

e |t is not invariant to other important variations such as rotations
and scale changes

» However, it's easy to artificially generate data with such
transformations

> could use such data as additional training data
> neural network can potentially learn to be invariant to such

transformations



Generating Additional Examples
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Elastic Distortions

» Can add “elastic” deformations (useful in character recognition)
» We can do this by applying a “distortion field” to the image

> adistortion field specifies where to displace each pixel value

random distortion

it

Bishop’s book
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Elastic Distortions

» Can add “elastic” deformations (useful in character recognition)
» We can do this by applying a “distortion field” to the image

> adistortion field specifies where to displace each pixel value

smoothod
random distortion

Bishop’s book



Why Training is Hard

e First hypothesis (underfitting): better optimize

> Increase the capacity of the neural network
> Tune learning rate

> Check gradients

» Second hypothesis (overfitting): use better regularization

> Dropout

> Data augmentation

» For many large-scale practical problems, you will need to use both:
better optimization and better regularization!



Optimization Tricks

e Pick learning rate by running on a subset of the data

> Start with large learning rate & divide by 2 until loss does not diverge

> Decay learning rate by a factor of ~100 or more by the end of training

e Initialize parameters so that each feature across layers has
similar variance. Avoid units in saturation.

e Tune the capacity of the neural network
e Number of layers
 Number of neurons per layer



Initialization

e |nitialize biases to 0
e For weights

— Can not initialize weights to 0 with tanh activation

> All gradients would be zero (saddle point)

— Can not initialize all weights to the same value
> All hidden units in a layer will always behave the same
> Need to break symmetry

- Sample W_f*;' from {7 [—p, 4], where

h— V6 Sample around 0 and
\/Hz +H, break symmetry

N

Size of (~) (x)



Choosing the Architecture

» Task dependent
e Cross-validation

e For image-based tasks:
[Convolution — pooling]* + fully connected layer

* The more data: the more layers and the more neurons per layer

» Computational resources



Visualization

» Check weight and gradient norms

* \Visualize features (feature maps need to be uncorrelated) and
have high variance

e Good training: hidden units
are sparse across samples

samples

hidden unit

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]



Visualization

» Check weight and gradient norms

* \Visualize features (feature maps need to be uncorrelated) and
have high variance

e Bad training: many hidden
units ignore the input and/or
exhibit strong correlations
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[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]



Visualization

» Check weight and gradient norms

* Visualize features (feature maps need to be uncorrelated) and
have high variance

 Visualize parameters: learned filters should exhibit structure and
should be uncorrelated

GOOD BAD

foo noisy foo correlated
[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]
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Visualization

» Check weight and gradient norms

* \Visualize features (feature maps need to be uncorrelated) and
have high variance

 Visualize parameters: learned filters should exhibit structure and
should be uncorrelated

» Measure error on both training and validation set

e Test on a small subset of the data and check the error — 0.

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]



When it does not work

e Training diverges:
> Learning rate may be too large — decrease learning rate
» Parameters collapse / loss is minimized but accuracy is low
> Check loss function: Is it appropriate for the task you want to solve?
> Does it have degenerate solutions?
* Network is underperforming
>  Compute flops and nr. params. — if too small, make net larger

> Visualize hidden units/params — fix optimization

e Network is too slow

> GPU, distrib. framework, make net smaller

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]



Conv Nets: Examples

» Optical Character Recognition, House Number and Traffic Sign

classification
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Ciresan et al. "“MCDNN for image classification” CVFPR 2012

Wan el al. “Regularization of neural networks using dropconnect” ICML 2013
Geodfellow el al. “Multi-digit nuber recognition from StrestView...” ICLR 2014
Jaderberg et al. "Synthetic data and ANN for natural scene text recognition” arXiv 2014



Conv Nets: Examples

e Pedestrian detection

Sermanet et al. “Pedestrian detection with unsupervised multi-stage..” CVPR 2013



Conv Nets: Examples

» Object Detection
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Sermanet et al. “OverFeat: Integrated recognition, localization” arxiv 2013
Girshick et al. “Rich feature hierarchies for accurate object detection” arxiv 2013
Szegedy et al. “DNN for object detection” NIPS 2013



ImageNet Dataset

» 1.2 million images, 1000 classes

Examples of Hammer
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Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009



Important Breakthroughs

* Deep Convolutional Nets for Vision (Supervised)

Krizhevsky, A., Sutskever, |. and Hinton, G. E., ImageNet Classification with
Deep Convolutional Neural Networks, NIPS, 2012.
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Architecture

 How can we select the right architecture:

> Manual tuning of features is now replaced with the manual tuning

of architechtures

e Depth
« Width

e Parameter count



How to Choose Architecture

» Many hyper-parameters:

> Number of layers, number of feature maps

e Cross Validation
» Grid Search (need lots of GPUs)

e Smarter Strategies

> Random search

> Bayesian Optimization



AlexNet

* 8 layers total

 Trained on Imagenet
dataset [Deng et al. CVPR’09]

e 18.2% top-5 error

[From Rob Fergus’ CIFAR 2016 tutorial]
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AlexNet

 Remove top fully connected layer 7
e Drop ~16 million parameters

e Only 1.1% drop in performance!

[From Rob Fergus’ CIFAR 2016 tutorial]
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AlexNet

 Let us remove upper feature extractor layers
and fully connected:

> lLayers 3,4,6and 7

e Drop ~50 million parameters

e 33.5 drop in performance!

e Depth of the network is the key.

[From Rob Fergus’ CIFAR 2016 tutorial]
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GooglLeNet
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[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]



GooglLeNet

» GooglLeNet inception module:

> Multiple filter scales at each layer

> Dimensionality reduction to keep computational requirements down
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[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]



GooglLeNet
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e Width of inception modules ranges from 256 filters (in early modules) to
1024 in top inception modules.

e Can remove fully connected layers on top completely
e Number of parameters is reduced to 5 million

* 6.7% top-5 validation error on Imagnet

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]
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