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Used Resources

• Some tutorial slides were borrowed from Rob Fergus’ CIFAR tutorial 
on ConvNets: 
https://sites.google.com/site/deeplearningsummerschool2016/speakers

• Disclaimer: Much of the material in this lecture was borrowed 
from Russ Salakhutdinov’s class on Deep Learning (10-807)

• Some slides were borrowed from Marc'Aurelio Ranzato’s CVPR 
2014 tutorial on Convolutional Nets 
https://sites.google.com/site/lsvrtutorialcvpr14/home/deeplearning

• Hugo Larochelle’s class on Neural Networks: 
https://sites.google.com/site/deeplearningsummerschool2016/



Feedforward Neural Networks



Stochastic Gradient Descent
• Perform updates after seeing each example:  
- Initialize:  
- For t=1:T 
- for each training example  

Training epoch 
= 

Iteration of all examples

• To train a neural net, we need:

➢  Loss function: 
➢  Compute gradients:  



Model Selection
• Training Protocol: 

- Train your model on the Training Set 

- For model selection, use Validation Set 
➢ Hyper-parameter search: hidden layer size, learning rate, 
number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set

• Remember: Generalization is the behavior of the model on 
unseen examples.  



Early Stopping
• To select the number of epochs, stop training when validation set 
error increases (with some look ahead).



Mini-batch, Momentum
• Make updates based on a mini-batch of examples (instead of a 
single example): 

➢ the gradient is the average regularized loss for that mini-batch 
➢ can give a more accurate estimate of the gradient 
➢ can leverage matrix/matrix operations, which are more efficient

• Momentum: Can use an exponential average of previous 
gradients:

➢ can get pass plateaus more quickly, by ‘‘gaining momentum’’



Adapting Learning Rates
• Updates with adaptive learning rates (“one learning rate per 
parameter”)

➢ Adagrad: learning rates are scaled by the square root of the 
cumulative sum of squared gradients

➢ RMSProp: instead of cumulative sum, use exponential moving 
average

➢ Adam: essentially combines 
RMSProp with momentum



Why Training is Hard
• First hypothesis: Hard optimization 
problem (underfitting)

➢ vanishing gradient problem 
➢ saturated units block gradient 

propagation 
➢ neural network does not have 

enough capacity 

• Vanishing gradient: This is a well 
known problem in recurrent neural 
networks



Why Training is Hard
• Second hypothesis: Overfitting

➢ we are exploring a space of complex functions 
➢ deep nets usually have lots of parameters

• Might be in a high variance / low bias situation



Why Training is Hard
• First hypothesis (underfitting): better optimize

➢ Increase the capacity of the neural network 
➢ Tune learning rate 
➢ Check gradients

• Second hypothesis (overfitting): use better regularization

➢ Dropout 
➢ Data augmentation

• For many large-scale practical problems, you will need to use both: 
better optimization and better regularization! 



Dropout
• Key idea: Cripple neural network by removing hidden units 
stochastically

➢ each hidden unit is set to 0 with 
probability 0.5 

➢ hidden units cannot co-adapt to 
other units 

➢ hidden units must be more generally 
useful

• Could use a different dropout 
probability, but 0.5 usually works well



Dropout at Test Time 
• At test time, we replace the masks by their expectation

➢ This is simply the constant vector 0.5 if dropout probability is 0.5 
➢ For single hidden layer: equivalent to taking the geometric average 

of all neural networks, with all possible binary masks

• Beats regular backpropagation on many datasets 

• Ensemble: Can be viewed as a geometric average of exponential 
number of networks. 



Why Training is Hard
• First hypothesis (underfitting): better optimize

➢ Increase the capacity of the neural network 
➢ Tune learning rate 
➢ Check gradients

• Second hypothesis (overfitting): use better regularization

➢ Dropout 
➢ Data augmentation

• For many large-scale practical problems, you will need to use both: 
better optimization and better regularization! 



Invariance by Data Augmentation

• Translation invariances built-in in convolutional network:
➢ due to convolution and max pooling

• It is not invariant to other important variations such as rotations 
and scale changes

• However, it’s easy to artificially generate data with such 
transformations

➢ could use such data as additional training data 
➢ neural network can potentially learn to be invariant to such 

transformations



Generating Additional Examples



Elastic Distortions
• Can add ‘‘elastic’’ deformations (useful in character recognition)

• We can do this by applying a ‘‘distortion field’’ to the image

➢ a distortion field specifies where to displace each pixel value

Bishop’s book
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Why Training is Hard
• First hypothesis (underfitting): better optimize

➢ Increase the capacity of the neural network 
➢ Tune learning rate 
➢ Check gradients

• Second hypothesis (overfitting): use better regularization

➢ Dropout 
➢ Data augmentation

• For many large-scale practical problems, you will need to use both: 
better optimization and better regularization! 



Optimization Tricks
• Pick learning rate by running on a subset of the data

➢ Start with large learning rate & divide by 2 until loss does not diverge 
➢ Decay learning rate by a factor of ~100 or more by the end of training 

• Initialize parameters so that each feature across layers has 
similar variance. Avoid units in saturation. 

• Tune the capacity of the neural network 
• Number of layers 
• Number of neurons per layer 



Initialization 
• Initialize biases to 0  
• For weights 
- Can not initialize weights to 0 with tanh activation

➢ All gradients would be zero (saddle point)

- Can not initialize all weights to the same value
➢ All hidden units in a layer will always behave the same
➢ Need to break symmetry

- Sample           from                  , where

Size of 

Sample around 0 and 
break symmetry



Choosing the Architecture
• Task dependent 

• Cross-validation 

• For image-based tasks:  
[Convolution → pooling]* + fully connected layer  

• The more data: the more layers and the more neurons per layer 

• Computational resources



Visualization
• Check weight and gradient norms 

• Visualize features (feature maps need to be uncorrelated) and 
have high variance 

• Good training: hidden units 
are sparse across samples  

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial] 



Visualization

• Bad training: many hidden 
units ignore the input and/or 
exhibit strong correlations 

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial] 

• Check weight and gradient norms 

• Visualize features (feature maps need to be uncorrelated) and 
have high variance 
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Visualization
• Check weight and gradient norms 

• Visualize features (feature maps need to be uncorrelated) and 
have high variance 

• Visualize parameters: learned filters should exhibit structure and 
should be uncorrelated 

• Measure error on both training and validation set 

• Test on a small subset of the data and check the error → 0. 

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial] 



When it does not work

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial] 

• Training diverges:
➢ Learning rate may be too large → decrease learning rate

• Parameters collapse / loss is minimized but accuracy is low
➢ Check loss function: Is it appropriate for the task you want to solve? 
➢ Does it have degenerate solutions?

• Network is underperforming
➢ Compute flops and nr. params. →  if too small, make net larger 
➢ Visualize hidden units/params → fix optimization 

• Network is too slow
➢ GPU, distrib. framework, make net smaller  



Conv Nets: Examples
• Optical Character Recognition, House Number and Traffic Sign 
classification



Conv Nets: Examples
• Pedestrian detection

Sermanet et al. “Pedestrian detection with unsupervised multi-stage..” CVPR 2013



Conv Nets: Examples
• Object Detection 

Sermanet et al. “OverFeat: Integrated recognition, localization” arxiv 2013 
Girshick et al. “Rich feature hierarchies for accurate object detection” arxiv 2013 
Szegedy et al. “DNN for object detection” NIPS 2013 



ImageNet Dataset
• 1.2 million images, 1000 classes

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009 

Examples of Hammer



Important Breakthroughs
• Deep Convolutional Nets for Vision (Supervised) 

Krizhevsky, A., Sutskever, I. and Hinton, G. E., ImageNet Classification with 
Deep Convolutional Neural Networks, NIPS, 2012. 

1.2 million training images 
1000 classes



Architecture 
• How can we select the right architecture:

➢ Manual tuning of features is now replaced with the manual tuning 

of architechtures

• Depth 

• Width 

• Parameter count 



How to Choose Architecture 
• Many hyper-parameters:

➢ Number of layers, number of feature maps

• Cross Validation 

• Grid Search (need lots of GPUs) 

• Smarter Strategies 

➢ Random search  
➢ Bayesian Optimization 



AlexNet
• 8 layers total 

• Trained on Imagenet 
dataset [Deng et al. CVPR’09] 

• 18.2% top-5 error  

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full

[From Rob Fergus’ CIFAR 2016 tutorial] 



AlexNet
• Remove top fully connected layer 7  

• Drop ~16 million parameters 

• Only 1.1% drop in performance! 

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

[From Rob Fergus’ CIFAR 2016 tutorial] 



AlexNet
• Let us remove upper feature extractor layers 
and fully connected: 
  

• Drop ~50 million parameters 

• 33.5 drop in performance! 

• Depth of the network is the key.  

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Softmax Output

Layer 2: Conv + Pool

Layer 5: Conv + Pool

➢ Layers 3,4, 6 and 7

[From Rob Fergus’ CIFAR 2016 tutorial] 



GoogLeNet

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

Convolution 
Pooling 
Softmax 
Other

• 24 layer model that uses so-called inception 
module.  

 



GoogLeNet

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

• GoogLeNet inception module:

➢ Multiple filter scales at each layer 
➢ Dimensionality reduction to keep computational requirements down 

1x1
number 
of filters

3x3

5x5



GoogLeNet

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

• Width of inception modules ranges from 256 filters (in early modules) to 
1024 in top inception modules. 

• Can remove fully connected layers on top completely 

• Number of parameters is reduced to 5 million 

• 6.7% top-5 validation error on Imagnet 

 



Residual Networks 

[He, Zhang, Ren, Sun, CVPR 2016]

Really, really deep convnets do not train well,  
E.g. CIFAR10:

Key idea: introduce “pass 
through” into each layer 

Thus only residual now 
needs to be learned

With ensembling, 3.57% top-5 
test error on ImageNet


