Final review

Aarti Singh

Machine Learning 10-315 Dec 2, 2019

Machine Learning Tasks

- Supervised
 - Classification: Bayes optimal rule

Naïve Bayes

Logistic Regression

Neural networks, Deep convolutional

SVMs, kernels

Decision tree

Boosting

k-NN

- Regression: Bayes optimal rule

Linear, regularized (ridge, lasso), kernelized Nonparametric kernel regression

Machine Learning Tasks

- Unsupervised:
 - Density estimation MLE, MAP, nonparametric
 - Dimensionality reduction PCA
 - Clustering hierarchical, k-means, mixture models and EM algorithm
- Theory: PAC bounds (Haussler, Hoeffding, VC)
- General concepts: Overfitting, generalization, model selection (cross validation), bias-variance

Bayes Optimal classifier

Optimal classifier: $f^*(x) = \arg \max_{Y=y} P(Y=y|X=x)$

 Even the optimal classifier makes mistakes: min probability of error > 0

d-dim Gaussian Bayes classifier

Naïve Bayes Classifier

- Bayes Classifier with additional "naïve" assumption:
 - Features are independent given class:

$$P(X_1...X_d|Y) = \prod_{i=1}^d P(X_i|Y)$$

$$f_{NB}(\mathbf{x}) = \arg \max_{y} P(x_1, \dots, x_d \mid y) P(y)$$
$$= \arg \max_{y} \prod_{i=1}^d P(x_i \mid y) P(y)$$

• Has fewer parameters, and hence requires fewer training data, even though assumption may be violated in practice

MLE vs. MAP

- Maximum Likelihood estimation (MLE) Choose value that maximizes the probability of observed data $\hat{\theta}_{MLE} = \arg\max_{\theta} P(D|\theta)$
- Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and prior belief

$$\hat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|D)$$
$$= \arg \max_{\theta} P(D|\theta)P(\theta)$$

When is MAP same as MLE?

Logistic Regression -

Assumes the following functional form for P(Y|X):

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Logistic function applied to a linear function of the data

Logisticfunction1(or Sigmoid):1 + exp(-z)

Not really regression

Training using maximum (conditional) likelihood – discriminative

$$\widehat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{n} P(Y^{(j)} | X^{(j)}, \mathbf{w})$$

Neural Networks to learn f: $X \rightarrow Y$

- f can be a **non-linear** function
- X (vector of) continuous and/or discrete variables
- Y (vector of) continuous and/or discrete variables
- Neural networks Represent f by <u>network</u> of logistic/sigmoid units:

Deep Convolutional Neural Networks

Convolution layers (ReLU) Max pooling layers – nonlinear downsampling (max value of regions) Fully connected layers Output softmax

Support Vector Machines

Decision trees

• Top-down induction [ID3, C4.5, C5, ...]

- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes
- 6. Prune back tree to reduce overfitting
- 7. Assign majority label to the leaf node

> 80K

YES

< 80K

NO

AdaBoost [Freund & Schapire'95]

Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$. Initially equal weights For $t = 1, \ldots, T$:

- Train weak learner using distribution D_t . Naïve bayes, decision stump
- Get weak classifier $h_t: X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$. Magic (+ve)
- Update:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Increase weight if wrong on pt i yi ht(xi) = -1 < 0

where Z_t is a normalization factor

Output the final classifier:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

k-NN classifier (k=5)

What should we predict? ... Average? Majority? Why?

Machine Learning Tasks

- Supervised
 - Classification: Bayes optimal rule

Naïve Bayes

Logistic Regression

Neural networks, Deep convolutional

SVMs, kernels

Decision tree

Boosting

k-NN

- Regression: Bayes optimal rule

Linear, regularized (ridge, lasso), kernelized Nonparametric kernel regression

Linear Regression

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$
 Least Squares Estimator

Multi-variate case:

Ĵ

$$f(X) = f(X^{(1)}, \dots, X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

=
$$X\beta$$
 where $X = [X^{(1)} \dots X^{(p)}], \quad \beta = [\beta_1 \dots \beta_p]^T$

1

Regularized Least Squares

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

r equations , p unknowns – underdetermined system of linear equations many feasible solutions Need to constrain solution further

e.g. bias solution to "small" values of β (small changes in input don't translate to large changes in output)

$$\begin{split} \widehat{\beta}_{\mathsf{MAP}} &= \arg\min_{\beta} \sum_{i=1}^{n} (Y_{i} - X_{i}\beta)^{2} + \lambda \|\beta\|_{2}^{2} & \begin{array}{l} \mathsf{Ridge Regression} \\ \mathsf{(l2 penalty)} \\ \\ \widehat{\beta}_{\mathsf{MAP}} &= \arg\min_{\beta} \sum_{i=1}^{n} (Y_{i} - X_{i}\beta)^{2} + \lambda \|\beta\|_{1} \\ \\ & \begin{array}{l} \lambda \geq 0 \\ \mathsf{(l1 penalty)} \\ \end{array} \end{split}$$

Many β can be zero – many inputs are irrelevant to prediction in highdimensional settings (typically intercept term not penalized)

Kernelized ridge regression

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y}$$
 $\widehat{f}_n(X) = \mathbf{X} \widehat{\beta}$

Using dual, can re-write solution as:

$$\widehat{\boldsymbol{\beta}} = \mathbf{A}^T (\mathbf{A}\mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{Y}$$

How does this help?

- Only need to invert n x n matrix (instead of p x p or m x m)
- More importantly, kernel trick!

$$\widehat{f}_n(X) = \mathbf{K}_X(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{Y} \text{ where } \begin{array}{c} \mathbf{K}_X(i) = \boldsymbol{\phi}(X) \cdot \boldsymbol{\phi}(X_i) \\ \mathbf{K}(i,j) = \boldsymbol{\phi}(X_i) \cdot \boldsymbol{\phi}(X_j) \end{array}$$

Work with kernels, never need to write out the high-dim vectors

Local Kernel Regression

- Nonparametric estimator akin to kNN
- Nadaraya-Watson Kernel Estimator

$$\widehat{f}_n(X) = \sum_{i=1}^n w_i Y_i$$
 Where $w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$

- Weight each training point based on distance to test point
- Boxcar kernel yields boxcar kernel : local average $K(x) = \frac{1}{2}I(x),$

Machine Learning Tasks

- Unsupervised:
 - Density estimation MLE, MAP, nonparametric
 - Dimensionality reduction PCA
 - Clustering hierarchical, k-means, mixture models and EM algorithm
- Theory: PAC bounds (Haussler, Hoeffding, VC)
- General concepts: Overfitting, generalization, model selection (cross validation), bias-variance

Kernel density estimate

Histogram – blocky estimate

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \operatorname{Bin}_x}}{n}$$

Kernel density estimate aka "Parzen/moving window method"

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{||X_j - x|| \le \Delta}}{n}$$

Principal Component Analysis (PCA)

$$(\mathbf{X}\mathbf{X}^T)\mathbf{v} = \lambda\mathbf{v}$$

Therefore, v is the eigenvector of sample covariance matrix XX^T

Sample variance of projection = $\mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} = \lambda$

Thus, the eigenvalue λ denotes the amount of variability captured along that dimension (aka amount of energy along that dimension).

Eigenvalues $\lambda_1 > \lambda_2 > \lambda_3 > \dots$

The 1st Principal component v_1 is the eigenvector of the sample covariance matrix XX^T associated with the largest eigenvalue λ_1

The 2nd Principal component v₂ is the eigenvector of the sample covariance matrix XX^T associated with the second largest eigenvalue λ_2

And so on ...

Bottom-up Agglomerative clustering

Different algorithms differ in how the similarities are defined (and hence updated) between two clusters

- Single-Linkage
 - Nearest Neighbor: similarity between their closest members.
- Complete-Linkage
 - Furthest Neighbor: similarity between their furthest members.
- Centroid
 - Similarity between the centers of gravity
- Average-Linkage
 - Average similarity of all cross-cluster pairs.

K-Means

Algorithm

Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary)

Iterate –

- 1. Assign points to the nearest cluster centers
- 2. Re-estimate the *k* cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

Termination –

If none of the objects changed membership in the last iteration, exit. Otherwise go to 1.

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is generated according to the following recipe:

 Pick a component at random: Choose component i with probability P(y=i)

2) Datapoint
$$x \sim N(\mu_i, \Sigma_i)$$

EM for general GMMs

M-step

Compute MLEs given our data's class membership distributions (weights)

$$\mu_i^{(t+1)} = \frac{\sum_j P(y=i|x_j,\lambda_t) x_j}{\sum_j P(y=i|x_j,\lambda_t)} \qquad \sum_i^{(t+1)} = \frac{\sum_j P(y=i|x_j,\lambda_t) (x_j - \mu_i^{(t+1)}) (x_j - \mu_i^{(t+1)})^T}{\sum_j P(y=i|x_j,\lambda_t)}$$

$$p_i^{(t+1)} = \frac{\sum_j P(y=i|x_j,\lambda_t)}{m} \qquad m = \text{#data points}$$

Summary of PAC bounds

3) for all $h \in H$, $|error_{true}(h) - error_{train}(h)| \le \varepsilon = 8\sqrt{\frac{VC(H)\left(\ln\frac{m}{VC(H)} + 1\right) + \ln\frac{8}{\delta}}{2m}}$

Infinite hypothesis space

Training Data vs. Test Data

- A good machine learning algorithm
 - Does not overfit training data
 - Generalizes well to test data

Training vs. Test Error

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error

 $Bias = E[f(X)] - f^*(X)$

How far is the model from best model on average

Variance = $E[(f(X) - E[f(X)])^2]$ How variable is the model