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Machine Learning Tasks
• Supervised

– Classification: Bayes optimal rule
Naïve Bayes
Logistic Regression
Neural networks, Deep convolutional
SVMs, kernels
Decision tree
Boosting
k-NN

– Regression: Bayes optimal rule
Linear, regularized (ridge, lasso), kernelized
Nonparametric kernel regression 
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Machine Learning Tasks
• Unsupervised: 

– Density estimation - MLE, MAP, nonparametric
– Dimensionality reduction – PCA
– Clustering – hierarchical, k-means, mixture models and EM 

algorithm

• Theory: PAC bounds (Haussler, Hoeffding, VC)

• General concepts: Overfitting, generalization, model selection 
(cross validation), bias-variance
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Bayes Optimal classifier
Optimal classifier:
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• Even the optimal classifier makes mistakes: min probability  
of error > 0

Min probability of 
error
P(f*(X) ≠ Y)0

0.5
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d-dim Gaussian Bayes classifier
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Class conditional 
density

Class probability

Bernoulli(θ)

Decision Boundary

µ1

µ1

µ2

µ2

Gaussian(μy,Σy)



Naïve Bayes Classifier
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• Bayes Classifier with additional “naïve” assumption:
– Features are independent given class:

• Has fewer parameters, and hence requires fewer training 
data, even though assumption may be violated in practice



MLE vs. MAP
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When is MAP same as MLE?

l Maximum Likelihood estimation (MLE)
Choose value that maximizes the probability of observed data

l Maximum a posteriori (MAP) estimation
Choose value that is most probable given observed data and 
prior belief



Logistic Regression
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Assumes the following functional form for P(Y|X):

Logistic
function
(or Sigmoid):

Logistic function applied to a linear
function of the data
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Not really regression

Training using maximum (conditional) likelihood – discriminative 



Neural Networks to learn f: X à Y
• f can be a non-linear function
• X (vector of) continuous and/or discrete variables
• Y (vector of) continuous and/or discrete variables

• Neural networks - Represent f by network of logistic/sigmoid 
units:

Input layer, X

Output layer, Y

Hidden layer, H

Sigmoid Unit



Convolution layers (ReLU)
Max pooling layers – nonlinear downsampling (max value of regions)
Fully connected layers
Output softmax

Deep Convolutional Neural 
Networks



Support Vector Machines
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w.x + b > 0 w.x + b < 0

min  w.w
w,b

s.t. (w.xj+b) yj ≥ 1 "j 

Solve efficiently by quadratic 
programming (QP)

Support vectors
Hard vs Soft
Primal vs Dual
Kernel Trick
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Decision trees
• Top-down induction [ID3, C4.5, C5, …]
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6. Prune back tree to reduce overfitting

7. Assign majority label to the leaf node

C4.5

feature

feature

For “best” split of X, create new descendants of
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weak
weak

Initially equal weights

Naïve bayes, decision stump

Magic (+ve)
Increase weight 
if wrong on pt i

yi ht(xi) = -1 < 0

AdaBoost [Freund & Schapire’95]



k-NN classifier (k=5)
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Sports

Science

Arts

Test document

What should we predict? … Average? Majority? Why?



Machine Learning Tasks
• Supervised

– Classification: Bayes optimal rule
Naïve Bayes
Logistic Regression
Neural networks, Deep convolutional
SVMs, kernels
Decision tree
Boosting
k-NN

– Regression: Bayes optimal rule
Linear, regularized (ridge, lasso), kernelized
Nonparametric kernel regression 
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Linear Regression
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- Class of Linear functions

b1 - intercept

b2 = slopeUni-variate case:

Multi-variate case: 1

where                                                     ,

Least Squares Estimator
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Regularized Least Squares

What if                   is not invertible ? 

Lasso
(l1 penalty)

r equations , p unknowns – underdetermined system of linear equations

many feasible solutions

Need to constrain solution further 

e.g. bias solution to “small” values of b (small changes in input don’t 

translate to large changes in output)

Many b can be zero – many inputs are irrelevant to prediction in high-

dimensional settings (typically intercept term not penalized)

� � 0

Ridge Regression
(l2 penalty)
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Kernelized ridge regression

Using dual, can re-write solution as:

How does this help? 
• Only need to invert n x n matrix (instead of p x p or m x m)
• More importantly, kernel trick!

where

Work with kernels, never need to write out the high-dim vectors

KX(i) = ���(X) · ���(Xi)

K(i, j) = ���(Xi) · ���(Xj)

b�MAP = (ATA+ �I)�1ATY

b� = AT (AAT + �I)�1Y

bfn(X) = KX(K+ �I)�1Y



Local Kernel Regression

• Nonparametric estimator akin to kNN
• Nadaraya-Watson Kernel Estimator

Where

• Weight each training point based on distance to test 
point

• Boxcar kernel yields
local average
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Machine Learning Tasks
• Unsupervised: 

– Density estimation - MLE, MAP, nonparametric
– Dimensionality reduction – PCA
– Clustering – hierarchical, k-means, mixture models and EM 

algorithm

• Theory: PAC bounds (Haussler, Hoeffding, VC)

• General concepts: Overfitting, generalization, model selection 
(cross validation), bias-variance
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• Histogram – blocky estimate

• Kernel density estimate aka “Parzen/moving window 
method”

Kernel density estimate
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Principal Component Analysis (PCA)

Sample variance of projection = 

Thus, the eigenvalue λ denotes the amount of variability captured along that 
dimension (aka amount of energy along that dimension).

Eigenvalues λ1 > λ2 > λ3 > … 

The 1st Principal component v1 is the eigenvector of the sample covariance matrix XXT 

associated with the largest eigenvalue λ1

The 2nd Principal component v2 is the eigenvector of the sample covariance matrix XXT 

associated with the second largest eigenvalue λ2

And so on …

Therefore, v is the eigenvector of sample covariance matrix XXT
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Bottom-up Agglomerative clustering
Different algorithms differ in how the similarities are defined (and hence 
updated) between two clusters

• Single-Linkage 
– Nearest Neighbor: similarity between

their closest members.

• Complete-Linkage 
– Furthest Neighbor: similarity between

their furthest members.

• Centroid
– Similarity between the centers of gravity

• Average-Linkage
– Average similarity of all cross-cluster pairs.
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K-Means
Algorithm
Input – Desired number of clusters, k

Initialize – the k cluster centers (randomly if necessary)

Iterate –

1. Assign points to the nearest cluster centers

2. Re-estimate the k cluster centers (aka the centroid or mean), by assuming 
the memberships found above are correct.

Termination –
If none of the objects changed membership in the last iteration, exit. 
Otherwise go to 1.



General GMM

GMM – Gaussian Mixture Model  (Multi-modal distribution)

µ1

µ2

µ3

µ1

µ2

µ3

• There are k components

• Component i has an associated 
mean vector µi

• Each component generates data 
from a Gaussian with mean µi and 
covariance matrix Si

Each data point is generated according 
to the following recipe: 
1) Pick a component at random: 

Choose component i with 
probability P(y=i)

2) Datapoint x ~ N(µi, Si)



EM for general GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step
Compute MLEs given our data’s class membership distributions (weights)

Just evaluate a 
Gaussian at xj

Iterate.  On iteration t let our estimates be

lt = { μ1
(t), μ2

(t) … μk
(t), S1

(t), S2
(t) … Sk

(t), p1
(t), p2

(t) … pk
(t) }        

pi
(t) is shorthand for 

estimate of P(y=i) on 
t’th iteration
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Summary of PAC bounds
With probability ≥ 1-d,  
1) for all h Î H s.t. errortrain(h) = 0, 

errortrue(h) ≤ e = 

2) for all h Î H, 
|errortrue(h) – errortrain(h)| ≤ e = 

3)   for all h Î H, 
|errortrue(h) – errortrain(h)| ≤ e = 
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• A good machine learning algorithm
– Does not overfit training data
– Generalizes well to test data

W
ei

gh
t

Height

Training Data vs. Test Data
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Test data



Training vs. Test Error

Training error is no longer a 
good indicator of test error 

fixed # training data

Training error

Test error

Model



Cross-validation
K-fold cross-validation

Create K-fold partition of the dataset.
Do K runs: train using K-1 partitions and calculate validation error 
on remaining partition (rotating validation partition on each run).

Report average validation error

validation

Run 1

Run 2

Run K

training



Bias-Variance tradeoff

Test error
Variance

Bias

Bias = E[f(X)] – f*(X) How far is the model from best model 
on average

Variance = E[(f(X) - E[f(X)])2] How variable is the model


