Final review

Aarti Singh

Machine Learning 10-315 Dec 2, 2019

Machine Learning Tasks

- Supervised
	- Classification: Bayes optimal rule

Naïve Bayes

Logistic Regression

Neural networks, Deep convolutional

SVMs, kernels

Decision tree

Boosting

k-NN

– Regression: Bayes optimal rule

Linear, regularized (ridge, lasso), kernelized Nonparametric kernel regression

Machine Learning Tasks

- Unsupervised:
	- Density estimation MLE, MAP, nonparametric
	- Dimensionality reduction PCA
	- Clustering hierarchical, k-means, mixture models and EM algorithm
- Theory: PAC bounds (Haussler, Hoeffding, VC)
- General concepts: Overfitting, generalization, model selection (cross validation), bias-variance

Bayes Optimal classifier

Optimal classifier: $f^*(x) = \arg \max_{Y=y} P(Y=y|X=x)$

• Even the optimal classifier makes mistakes: min probability of error > 0

d-dim Gaussian Bayes classifier

Naïve Bayes Classifier

- Bayes Classifier with additional "naïve" assumption:
	- Features are independent given class:

$$
P(X_1...X_d|Y) = \prod_{i=1}^d P(X_i|Y)
$$

$$
f_{NB}(\mathbf{x}) = \arg \max_{y} P(x_1, \dots, x_d | y) P(y)
$$

=
$$
\arg \max_{y} \prod_{i=1}^d P(x_i | y) P(y)
$$

• Has fewer parameters, and hence requires fewer training data, even though assumption may be violated in practice

MLE vs. MAP

- Maximum Likelihood estimation (MLE) Choose value that maximizes the probability of observed data $\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$
- l Maximum *a posteriori* (MAP) estimation

Choose value that is most probable given observed data and prior belief

$$
\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|D)
$$

= arg max $P(D|\theta)P(\theta)$

When is MAP same as MLE?

Logistic Regression

Assumes the following functional form for $P(Y|X)$:

$$
P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}
$$

Logistic function applied to a linear function of the data

Logistic function $\overline{1 + exp(-z)}$ **(or Sigmoid):**

Not really regression

Training using maximum (conditional) likelihood – discriminative

$$
\widehat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{n} P(Y^{(j)} | X^{(j)}, \mathbf{w})
$$

Neural Networks to learn f: X → Y

- f can be a **non-linear** function
- X (vector of) continuous and/or discrete variables
- Y (**vector** of) continuous and/or discrete variables
- Neural networks Represent f by *network* of logistic/sigmoid units:

Deep Convolutional Neural Networks

Convolution layers (ReLU) Max pooling layers – nonlinear downsampling (max value of regions) **Fully connected layers Output softmax**

Support Vector Machines

Decision trees

• Top-down induction [ID3, C4.5, C5, ...]

- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes
- 6. Prune back tree to reduce overfitting
- 7. Assign majority label to the leaf node

NO YES

 $< 80K$ $\geq 80K$

AdaBoost [Freund & Schapire'95]

Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$ Initialize $D_1(i) = 1/m$. **Initially equal weights** For $t = 1, \ldots, T$:

- Train weak learner using distribution D_t . **Naïve bayes, decision stump**
- Get weak classifier $h_t: X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$. **Magic (+ve)**
- \bullet Update:

$$
D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
$$

Increase weight if wrong on pt i y_i $h_t(x_i) = -1 < 0$

where Z_t is a normalization factor

Output the final classifier:

$$
H(x) = \text{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right).
$$

k-NN classifier (k=5)

What should we predict? … Average? Majority? Why?

Machine Learning Tasks

- Supervised
	- Classification: Bayes optimal rule

Naïve Bayes

Logistic Regression

Neural networks, Deep convolutional

SVMs, kernels

Decision tree

Boosting

k-NN

– Regression: Bayes optimal rule

Linear, regularized (ridge, lasso), kernelized Nonparametric kernel regression

Linear Regression

$$
\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2
$$
 Least Squares Estimator

Multi-variate case: 1

$$
f(X) = f(X^{(1)}, \dots, X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}
$$

$$
= X\beta \qquad \text{where} \quad X = [X^{(1)} \dots X^{(p)}], \quad \beta = [\beta_1 \dots \beta_p]^T
$$

Regularized Least Squares

What if $(A^T A)$ is not invertible ?

r equations , p unknowns – underdetermined system of linear equations many feasible solutions Need to constrain solution further

e.g. bias solution to "small" values of β (small changes in input don't translate to large changes in output)

$$
\widehat{\beta}_{MAP} = \arg \min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda ||\beta||_2^2
$$
 Ridge Regression
(12 penalty)

$$
\widehat{\beta}_{MAP} = \arg \min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda ||\beta||_1
$$
 Lasso
(11 penalty)

Many β can be zero – many inputs are irrelevant to prediction in highdimensional settings (typically intercept term not penalized)

Kernelized ridge regression

$$
\widehat{\beta} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{Y} \qquad \qquad \widehat{f}_n(X) = \mathbf{X} \widehat{\beta}
$$

Using dual, can re-write solution as:

$$
\widehat{\beta} = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \lambda \mathbf{I})^{-1} \mathbf{Y}
$$

How does this help?

- Only need to invert n x n matrix (instead of p x p or m x m)
- More importantly, kernel trick!

$$
\widehat{f}_n(X) = \mathbf{K}_X(\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{Y} \text{ where } \begin{aligned} \mathbf{K}_X(i) &= \boldsymbol{\phi}(X) \cdot \boldsymbol{\phi}(X_i) \\ \mathbf{K}(i,j) &= \boldsymbol{\phi}(X_i) \cdot \boldsymbol{\phi}(X_j) \end{aligned}
$$

Work with kernels, never need to write out the high-dim vectors

Local Kernel Regression

- Nonparametric estimator akin to kNN
- Nadaraya-Watson Kernel Estimator

$$
\widehat{f}_n(X) = \sum_{i=1}^n w_i Y_i \quad \text{Where} \quad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X - X_i}{h}\right)}
$$

- Weight each training point based on distance to test point
- Boxcar kernel yields boxcar kernel: $K(x) = \frac{1}{2}I(x),$ local average

h

Machine Learning Tasks

- Unsupervised:
	- Density estimation MLE, MAP, nonparametric
	- Dimensionality reduction PCA
	- Clustering hierarchical, k-means, mixture models and EM algorithm
- Theory: PAC bounds (Haussler, Hoeffding, VC)
- General concepts: Overfitting, generalization, model selection (cross validation), bias-variance

Kernel density estimate

• Histogram – blocky estimate

$$
\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \text{Bin}_x}}{n}
$$

• Kernel density estimate aka "Parzen/moving window method"

$$
\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{\left|\left|X_j - x\right|\right| \leq \Delta}}{n}
$$

Principal Component Analysis (PCA)

$$
(\mathbf{X}\mathbf{X}^T)\mathbf{v} = \lambda\mathbf{v}
$$

Therefore, v is the eigenvector of sample covariance matrix XXT

Sample variance of projection = $\mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} = \lambda$

Thus, the eigenvalue λ denotes the amount of variability captured along that dimension (aka amount of energy along that dimension).

Eigenvalues $\lambda_1 > \lambda_2 > \lambda_3 > ...$

The 1st Principal component v₁ is the eigenvector of the sample covariance matrix XX^T associated with the largest eigenvalue λ_1

The 2^{nd} Principal component v₂ is the eigenvector of the sample covariance matrix XX^T associated with the second largest eigenvalue λ_2

And so on …

Bottom-up Agglomerative clustering

Different algorithms differ in how the similarities are defined (and hence updated) between two clusters

- Single-Linkage
	- Nearest Neighbor: similarity between their closest members.
- Complete-Linkage
	- Furthest Neighbor: similarity between their furthest members.
- Centroid
	- Similarity between the centers of gravity
- Average-Linkage
	- Average similarity of all cross-cluster pairs.

K-Means

Algorithm

Input – Desired number of clusters, *k*

Initialize – the *k* cluster centers (randomly if necessary)

Iterate –

- 1. Assign points to the nearest cluster centers
- 2. Re-estimate the *k* cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

$$
\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i
$$

Termination –

If none of the objects changed membership in the last iteration, exit. Otherwise go to 1.

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

- There are k components
- Component *i* has an associated mean vector ^µ*ⁱ*
- Each component generates data from a Gaussian with mean ^µ*i* and covariance matrix \mathcal{Z}_i

Each data point is generated according to the following recipe:

1) Pick a component at random: Choose component i with probability *P(y=i)*

2) Datapoint $x \sim N(\mu_i, \Sigma_i)$

EM for general GMMs

M-step

Compute MLEs given our data's class membership distributions (weights)

$$
\mu_i^{(t+1)} = \frac{\sum_j P(y=i|x_j, \lambda_t)x_j}{\sum_j P(y=i|x_j, \lambda_t)} \sum_i^{(t+1)} = \frac{\sum_j P(y=i|x_j, \lambda_t)(x_j - \mu_i^{(t+1)})^T}{\sum_j P(y=i|x_j, \lambda_t)}
$$

$$
p_i^{(t+1)} = \frac{\sum_j P(y=i|x_j, \lambda_t)}{m} \sum_j^{(t+1)} = \frac{\sum_j P(y=i|x_j, \lambda_t)}{m} = \text{#data points}
$$

Summary of PAC bounds

 $|error_{true}(h) - error_{train}(h)| \le \varepsilon = 8$ 8 2

Infinite hypothesis space

Training Data vs. Test Data

- A good machine learning algorithm
	- Does not **overfit** training data
	-

Training vs. Test Error

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error

Bias = $E[f(X)] - f^{*}(X)$ How far is the model from best model on average

Variance = $E[(f(X) - E[f(X)])^2]$ How variable is the model