Density estimation



Density Estimation

® A Density Estimator learns a mapping from a set of attributes to a Probability

Input data for a
variable or a set of
variables
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Density estimation

® Estimate the distribution (or conditional distribution) of a random variable
® Types of variables:
- Binary
coin flip, alarm
- Discrete
dice, car model year

- Continuous

height, weight, temp.,



When do we need to estimate densities?

® Density estimators are critical ingredients in several of the ML algorithms we will
discuss

® In some cases these are combined with other inference types for more involved
algorithms (i.e. EM) while in others they are part of a more general process
(learning in BNs and HMMSs)



Density estimation

® Binary and discrete variables:

Easy: Just count!

® Continuous variables:

Harder (but just a bit): Fit
a model



Learning a density estimator for discrete
variables

#records in which x, = u

f’(xl. =u)=
total number of records

A trivial learning algorithm!

But why Is this true?



Maximum Likelihood Principle

We can define the likelihood of the data given the model as
follows:

f’(dataset | M) =]3(x1/\x2.../\xn | M) :H]S(xk | M)

\ e

M Is our model (usually a
collection of parameters)
For example M is

- The probability of ‘head’ for a coin flip
- The probabillities of observing 1,2,3,4 and 5 for a dice

- elc.



Maximum Likelihood Principle

P(dataset | M) = P(x, Ax,...~x, | M)=] [ P(x, | M)

k=1
* Our goal Is to determine the values for the parameters in M

* We can do this by maximizing the probability of generating the observed
samples
* For example, let @ be the probabilities for a coin flip
* Then
L(Xy, ..., %, | O) =p(X,]| O) ... p(x, | O

* The observations (different flips) are assumed to be independent
* For such a coin flip with P(H)=q the best assignment for &, is

argmax, = #H/#samples
* Why?



Maximum Likelihood Principle: Binary
variables

* For a binary random variable A with P(A=1)=q
argmax, = #1/#samples

* Why?

Data likelihood: FP(PIM)=a"-)"

We would like to find: 29Maxqa"(1—-a)"

Omitting terms that /

do not depend on g




Maximum Likelihood Principle

Data likelihood: P(D|M)=qg"(@1-q)™
We would like to find; argmax,q™(1-q)™
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Recall: Your first consulting job

® A billionaire from the suburbs of Seattle asks you a question:

— He says: | have a coin, if | flip it, what's the probability it will fall with the head
up?
— You say: Please flip it a few times:

— You say: The probabillity is: 3/5 because... frequency of heads in all flips
— He says: But can | put money on this estimate?
—You say: ummm.... Maybe not.

— Not enough flips (less than sample complexity)



What about prior knowledge?

Billionaire says: Wait, | know that the coin is “close” to 50-50. What can
you do for me now?

You say: | can learn it the Bayesian way...

Rather than estimating a single 6, we obtain a distribution over possible
values of 0

Before data After data

P(0)

P0|D)

50-50 0 05 P



Bayesian Learning

* Use Bayes rule:

P(|D) =

* Or equivalently:

P@#|D) x P(D|§)P(6)

posterior likelihood prior
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Prior distribution

® From where do we get the prior?
= Represents expert knowledge (philosophical approach)

= Simple posterior form (engineer’s approach)

® Uninformative priors:

= Uniform distribution

® Conjugate priors:
= Closed-form representation of posterior

= P(g) and P(q|D) have the same algebraic form as a function of \theta



Conjugate Prior

® P(g) and P(gq|D) have the same form as a function of theta

Eg. 1 Coin flip problem
Likelihood given Bernoulli model:
P(D|6)=6"H(1-0)"T
If prior is Beta distribution,
P(g) = pPu—1(1 — g)br-1
B(By, Ar)

Then posterior is Beta distribution

~ BGtCL(ﬁH, ﬁT)

P(0|D) ~ Beta(Bg + oy, fr + ar)

22



Beta distribution

Beta(By, By) More concentrated as values of B, B increase
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Beta conjugate prior

P(Q) ™~ B@t&(ﬁH,ﬁT) P(0|D) ~ Betd(ﬂ[_] + O‘HaBT + CYT)
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As we get more samples, effect of prior is “washed out”



Conjugate Prior The posterior p(6 | x) is in the same probability
distribution family as the prior probability distribution p(8)

P(D|0) = P(h,t|0) = ( Z ) 9"(1 = H)‘ — ( Z ) 9“(1 _ 9)7&—’&
6)(1—1(1 = 9)[3—1

PO =—=3575
P(D|6)P(6)
PO = ThDi6) Po)ds
Z ghte—1(1 — §)t+A—1/B(a, B)
9h+a—1(1 o 9)L+[3—1

B(h + a,t + B)



Conjugate Prior

® P(0) and P(0|D) have the same form

Eg. 2 Dice roll problem (6 outcomes instead of 2) L

Likelinood is ~ Multinomial(® = {0,, 0., ... , 6,}) \ &
' [ J

P(D|6) =06,105%...0."

If prior is Diricniet aistripution,

o= =t Gy 50
P§) = ———=—-1 ~ Dirichlet(81,..., B
Then poste B(ﬁla e 7ﬂk) o

P(0|D) ~ Dirichlet(1 + a1, ..., 8 + o)

For Multinomial, conjugate prior is Dirichlet distribution.



Posterior Distribution

The approach seen so far is what is known as a Bayesian approach
Prior information encoded as a distribution over possible values of parameter

Using the Bayes rule, you get an updated posterior distribution over parameters,
which you provide with flourish to the Billionaire

But the billionaire is not impressed

= Distribution? | just asked for one number: is it 3/5, 1/2, what is it?

How do we go from a distribution over parameters, to a single estimate of the
true parameters?



Maximum A Posteriori Estimation

Choose 0 that maximizes a posterior probability

Orap = argm@ax P(0| D)
= arg meax P(D |0)P(0)

MAP estimate of probability of head:

P(0|D) ~ Beta(Bg + oy, fr + ar)

ag + g —1 Mode of Beta

apg+ By +ap+br—2 distribution
27

Oriap =



Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:

— Features are independent given class:

P(X1,X0lY) = P(X1|X2,Y)P(X5|Y)
= P(X1|Y)P(X3|Y)

— More generally:
d X =
P(X;1..X4lY) = ]| P(X;]Y)
=1

If conditionalindependence assumption holds, NB is
optimal classifier! But worse otherwise.

17




Conditional Independence

* Xis conditionally independent of Y given Z:

probability distribution governing X is independent of the value
of Y, given the value of Z

(Ve,y,z) P(X =z|]Y =y, Z =2) = P(X =x|Z = z)

* Equivalentto:
P(X,Y |2Z)=P(X | 2)P(Y | 2Z)

* e.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)
Note: does NOT mean Thunderis independentof Rain

18



Conditional vs. Marginal Independence

London taxi drivers: A survey has pointed out a positive and
significant correlation between the number of accidents and wearing
coats. They concluded that coats could hinder movements of drivers and
be the cause of accidents. A new law was prepared to prohibit drivers

from wearing coats when driving.

19



Conditional vs. Marginal Independence

London taxi drivers: A survey has pointed out a positive and
significant correlation between the number of accidents and wearing
coats. They concluded that coats could hinder movements of drivers and
be the cause of accidents. A new law was prepared to prohibit drivers

from wearing coats when driving.

Finally another study pointed out that people wear coats when it rains...

Wearing coats is independent of accidents conditioned on
the fact that it rained

20



Handwritten digit recognition
(discrete features)

Training Data: "Xy ] .. n black-white (1/0)
y _ | X /‘ ; l images with
B d pixels
y 1 2 ... h labels

How many parameters?
- i May not
Class probability P(Y =y) =p, for ally K-1if K labels

Class conditional distribution of features (using Naive Bayes
assumption)

P(X. = x.|Y =y) — one probability value for each y, pixel i Kd

Linear instead of Exponential in d! 23



Naive Bayes Classifier

Bayes Classifier with additional “naive” assumption:

— Features are independent given class:

d
P(X;1..X4lY) = ]| P(X;]Y)
1=1
fnp(x) = arg max P(x1,...,2q | y)P(y)
d
= argmax || P(xily) P(y)
1=1

Has fewer parameters, and hence requires fewer training
data, even though assumption may be violated in practice

24



Naive Bayes Algo — Discrete features

e Training Data {(X),y()n_, x0) = (x,...,x7)

 Maximum Likelihood Estimates
— For Class probability

— For class conditional distribution

P(z;,y) _{#5: X(”) =z, YU = y}/n
P(y) {(#37: YU =y}/n

* NB Predictionfor testdata X = (z1,...,xy)

P(xmy)
Y = P
arg mpx P(y) 7,131 P(y) .




Naive Bayes Algo — Discrete features

* Training Data {(X(j)»y(j))}?’zl x0U) = (ng),---,Xc(lj))

|H

e Maximum A Posteriori (MAP) Estimates — add m “virtual” datapts

Assume given some prior distribution (typically uniform):
QXY =1b) Q(X; =a,Y =b)

(#j: XD =a,v®D = b} + mQ(X; = a,Y = b)
{#7: Y@ =b} + mQ(Y =b)
# vi'rtual examples
withY=b
Now, even if you never observe a class/feature posterior
probability never zero.

P(X;=aly =b) =

28



Case Study: Text Classification

Classify e-mails

— Y ={Spam,NotSpam}

Classify news articles

— Y ={what is the topic of the article?}
Classify webpages

— Y = {Student, professor, project, ...}

What about the features X?
— The text!

29



P All About The Company

Global Activities
Corporate Structure
TOTAL's Story
Upstream Strategy
Downstream Strategy
Chemicals Strategy
TOTAL Foundation
Homepage

all about the
company

Our energy exploration, production, and distnbution
operations span the globe, with activities in more than 100
countries.

At TOTAL, we draw our greatest strength from our
fast-growing o1l and gas reserves. Our strategic emphasis
on natural gas provides a strong position i a rapidly

expanding market.

Our expanding refining and marketing operations in Asta
and the Mediterranean Rim complement already solid
posttions in Europe, Aftica, and the .3

Our growing spectalty chemicals sector adds balance and
profit to the core energy business.

Bag of words approach

v

aardvark
about

all
Africa
apple

anxious

gas

oil

Zaire

30



Bag of words model

* Typical additional assumption — Position in document doesn’t

matter
— “Bag of words” model —order of words on the page ignored
— Soundsreallysilly, but often works very well!

in is lecture lecture next over person remember room
sitting the the the to to up wake when you

32



Bag of words model

* Typical additional assumption — Position in document doesn’t

matter
— “Bag of words” model —order of words on the page ignored
— Soundsreallysilly, but often works very well!

When the lecture is over, remember to wake up the
person sitting next to you in the lecture room.

33



NB for Text Classification

Features X are the count of how many times each word in the
vocabulary appears in document

Probability table for P(X]Y) is huge!!!
NB assumption helpsa lot!!!

Bag of words + Naive Bayes assumption imply P(X|Y=y) is just
the product of probability of each word, raised to its count, in a
document on topicy

%%

hyp(x) = argmaxP(y) [] P(wly)couwniv

w=—1
31



NB with Bag of Words for text
classification

* Learning phase:

— Class Prior P(Y): fraction of times topicY appears in the
collection of documents

— P(w|Y): fraction of times word w appears in documents
with topicY

e Test phase:
— For each document
* Use Bag of words + naive Bayes decision rule

w
hyp(x) = argmax P(y) ] P(w|y)eunte

w=1

34



Twenty news groups results

Given 1000 training documents from each group
Learn to classify new documents according to
which newsgroup it came from

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med
talk.politics.misc
talk.politics.guns

Naive Bayes: 89% classification accuracy
35



Discriminative vs Generative Classifiers

Optimal Classifier:
f*(z) =argmax P(Y = y|X = z)
Y:y

= argmax P(X =2|Y =y)P(Y =y)
=y

Generative (Model based) approach: e.g. Naive Bayes
 Assumesome probability modelfor P(Y) and P(X]|Y)
 Estimate parameters of probability models from training data

Discriminative (Model free) approach: e.g. Logistic regression

Why not learn P(Y|X) directly? Or better yet, why not learn the decision
boundarydirectly?

* Assume some functional form for P(Y|X) or for the decision boundary

* Estimate parameters of functional form directly from training data
43
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