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Density Estimation 

• A Density Estimator learns a mapping from a set of attributes to a Probability 

Density 
Estimator 

Probability 

Input data for a 
variable or a set of 

variables 



Density estimation 

• Estimate the distribution (or conditional distribution) of a random variable 

• Types of variables: 

    - Binary 

      coin flip, alarm  

     - Discrete 

       dice, car model year  

      - Continuous  

      height, weight, temp.,   



When do we need to estimate densities?  
• Density estimators are critical ingredients in several of the ML algorithms we will 

discuss 

• In some cases these are combined with other inference types for more involved 

algorithms (i.e. EM) while in others they are part of a more general process 

(learning in BNs and HMMs) 



Density estimation 

• Binary and discrete variables:  

 

 

• Continuous variables: 

 

Easy: Just count! 

Harder (but just a bit): Fit 

a model 



Learning a density estimator for discrete 

variables 

 

ˆ P (x i  u) 
#records in which x i  u 

total number of records

A trivial learning algorithm! 

But why is this true? 



Maximum Likelihood Principle 

M is our model (usually a 

collection of parameters) 

 

ˆ P (dataset | M)  ˆ P (x1  x2  xn | M)  ˆ P (xk | M)
k1

n



We can define the likelihood of the data given the model as 

follows: 

For example M is 

- The probability of ‘head’ for a coin flip 

-  The probabilities of observing 1,2,3,4 and 5 for a dice 

-  etc.  



Maximum Likelihood Principle 

• Our goal is to determine the values for the parameters in M 

• We can do this by maximizing the probability of generating the observed 

samples 

• For example, let  be the probabilities for a coin flip 

• Then  

                 L(x1, … ,xn | ) = p(x1 | ) … p(xn  | ) 

• The observations (different flips) are assumed to be independent 

• For such a coin flip with P(H)=q the best assignment for h is  

        argmaxq = #H/#samples 

• Why? 

 

 

ˆ P (dataset | M)  ˆ P (x1  x2  xn | M)  ˆ P (xk | M)
k1

n





• For a binary random variable A with P(A=1)=q 

        argmaxq = #1/#samples 

 

• Why? 

 

Data likelihood: 

 

We would like to find: 

Maximum Likelihood Principle: Binary 

variables 
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do not depend on q 



Data likelihood: 

We would like to find: 

Maximum Likelihood Principle 
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Recall: Your first consulting job 

• A billionaire from the suburbs of Seattle asks you a question: 

–He says: I have a coin, if I flip it, what’s the probability it will fall with the head 

up? 

–You say: Please flip it a few times: 

 

 

 

 

–You say: The probability is: 3/5 because… frequency of heads in all flips 

–He says: But can I put money on this estimate? 

–You say: ummm…. Maybe not.  

– Not enough flips (less than sample complexity) 



What about prior knowledge? 

• Billionaire says: Wait, I know that the coin is “close” to 50-50. What can 

you do for me now? 

• You say: I can learn it the Bayesian way… 

 

• Rather than estimating a single , we obtain a distribution over possible 

values of  

 

 

50-50 

Before data After data 



Bayesian Learning 
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• Use Bayes rule: 

 

 

 

• Or equivalently: 

posterior likelihood prior 



Prior distribution 

• From where do we get the prior? 

- Represents expert knowledge (philosophical approach) 

- Simple posterior form (engineer’s approach) 

 

• Uninformative priors: 

- Uniform distribution 

 

• Conjugate priors: 

- Closed-form representation of posterior 

- P(q) and P(q|D) have the same algebraic form as a function of \theta  

 



Conjugate Prior 

• P(q) and P(q|D) have the same form as a function of theta 

 

Eg. 1  Coin flip problem 

Likelihood given Bernoulli model: 

 

If prior is Beta distribution,  

 

 

Then posterior is Beta distribution 

 

 

 

 

 

 

For Binomial, conjugate prior is Beta distribution. 
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Beta distribution 

More concentrated as values of bH, bT increase 



Beta conjugate prior 

As n = aH + aT 

increases 

As we get more samples, effect of prior is “washed out” 



Conjugate Prior The posterior p(θ | x) is in the same probability 
distribution family as the prior probability distribution p(θ)



Conjugate Prior 

• P() and P(|D) have the same form 

 

Eg. 2  Dice roll problem (6 outcomes instead of 2) 

Likelihood is ~ Multinomial(  {1, 2, … , k}) 

 

If prior is Dirichlet distribution,  

 

 

Then posterior is Dirichlet distribution 

 

 

 

 

 

 

For Multinomial, conjugate prior is Dirichlet distribution. 



Posterior Distribution 

• The approach seen so far is what is known as a Bayesian approach 

• Prior information encoded as a distribution over possible values of parameter 

• Using the Bayes rule, you get an updated posterior distribution over parameters, 

which you provide with flourish to the Billionaire 

• But the billionaire is not impressed 

- Distribution? I just asked for one number: is it 3/5, 1/2, what is it? 

- How do we go from a distribution over parameters, to a single estimate of the 

true parameters? 

 



Maximum A Posteriori Estimation 

Choose  that maximizes a posterior probability 

 

 

 

 

MAP estimate of probability of head: 
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Mode of Beta 

distribution 



Naïve	Bayes	Classifier
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• Bayes	Classifier	with	additional	“naïve”	assumption:
– Features	are	independent	given	class:

– More	generally:

• If	conditional	independence	assumption	holds,	NB	is	
optimal	classifier!	But	worse	otherwise.

X =


X1

X2

�

=
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X1

X2

. . .
Xd
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775X =


X1

X2
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Conditional	Independence
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• X	is	conditionally	independent of	Y	given	Z:
probability	distribution	governing	X	is	independent	of	the	value	
of	Y,	given	the	value	of	Z

• Equivalent	to:

• e.g.,
Note: does	NOT	mean	Thunder	is	independent	of	Rain



Conditional	vs.	Marginal	Independence
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Conditional	vs.	Marginal	Independence
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Wearing	coats	is	independent	of	accidents	conditioned	on	
the	fact	that	it	rained



Handwritten	digit	recognition	
(discrete	features)
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Training	Data:	

How	many	parameters?

Class	probability	P(Y	=	y)	=py for	all	y

Class	conditional	distribution	of	features	(using	Naïve	Bayes	
assumption)	

P(Xi =	xi|Y =	y)	– one	probability	value	for	each	y,	pixel	i

K-1	if	K	labels

Kd

1 2

…	n	black-white	(1/0)
images	with		
d	pixels

…	n	labels

X

Y

=

2

664

X1

X2

. . .
Xd

3

775

May not 
hold

Linear	instead	of	Exponential	in	d!



Naïve	Bayes	Classifier
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• Bayes	Classifier	with	additional	“naïve”	assumption:
– Features	are	independent	given	class:

• Has	fewer	parameters,	and	hence	requires	fewer	training	
data,	even	though	assumption	may	be	violated	in	practice



Naïve	Bayes Algo – Discrete	features

• Training	Data

• Maximum	Likelihood	Estimates
– For	Class	probability	

– For	class	conditional	distribution

• NB	Prediction	for	test	data
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Naïve	Bayes Algo – Discrete	features

• Training	Data

• Maximum	A	Posteriori	(MAP)	Estimates	– add	m	“virtual”	datapts

Assume	given	some	prior	distribution	(typically	uniform):

MAP	Estimate

Now,	even	if	you	never	observe	a	class/feature	posterior	
probability	never	zero.

28

#	virtual	examples	
with	Y	=	b



Case	Study:	Text	Classification
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• Classify	e-mails
– Y	=	{Spam,NotSpam}

• Classify	news	articles
– Y	=	{what	is	the	topic	of	the	article?}

• Classify	webpages
– Y	=	{Student,	professor,	project,	…}

• What	about	the	features	X?
– The	text!



Bag	of	words	approach
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aardvark 0

about 2

all 2

Africa 1

apple 0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0



Bag	of	words	model

32

• Typical	additional	assumption	– Position	in	document	doesn’t	
matter
– “Bag	of	words”	model	– order	of	words	on	the	page	ignored
– Sounds	really	silly,	but	often	works	very	well!

in	is	lecture	lecture next	over	person	remember	room	
sitting	the	the the to	to up	wake	when	you



Bag	of	words	model
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• Typical	additional	assumption	– Position	in	document	doesn’t	
matter
– “Bag	of	words”	model	– order	of	words	on	the	page	ignored
– Sounds	really	silly,	but	often	works	very	well!

When	the	lecture	is	over,	remember	to	wake	up	the	
person	sitting	next	to	you	in	the	lecture	room.



NB	for	Text	Classification
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• Features	X are	the	count	of	how	many	times	each	word	in	the	
vocabulary	appears	in	document

• Probability	table	for	P(X|Y)	is	huge!!!

• NB	assumption	helps	a	lot!!!

• Bag	of	words	+	Naïve	Bayes	assumption	imply	P(X|Y=y)	is	just	
the	product of	probability	of	each	word,	raised	to	its	count, in	a	
document	on	topic	y



NB	with	Bag	of	Words	for	text	
classification
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• Learning	phase:
– Class	Prior	P(Y):	fraction of	times	topic	Y	appears	in	the	
collection	of	documents

– P(w|Y):	fraction	of	times	word w	appears	in	documents	
with	topic	Y	

• Test	phase:
– For	each	document

• Use	Bag	of	words	+	naïve	Bayes	decision	rule



Twenty	news	groups	results
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Discriminative	vs Generative	Classifiers
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Generative	(Model	based)	approach:	e.g.	Naïve	Bayes
• Assume	some	probability	model	for	P(Y)	and	P(X|Y)
• Estimate	parameters	of	probability	models	from	training	data

Discriminative	(Model	free)	approach:	e.g.	Logistic	regression
Why	not	learn	P(Y|X)	directly?	Or	better	yet,	why	not	learn	the	decision	
boundary	directly?
• Assume	some	functional	form	for	P(Y|X)	or	for	the	decision	boundary	
• Estimate	parameters	of	functional	form	directly	from	training	data

Optimal	Classifier:
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