
Homework 1
Naive Bayes and Logistic Regression1

CMU 10-315: Introduction to Machine Learning (Fall 2019)

https://piazza.com/class/jzqjbzyfzu32p2
OUT: September 4 2019

DUE: September 18 2019 11:59 pm.
TAs: Aliaa Essameldin, Fabricio Flores, Siddharth Ancha, Yue Wu

START HERE: Instructions

• Collaboration policy: Collaboration on solving the homework is allowed, after you
have thought about the problems on your own. It is also OK to get clarification (but
not solutions) from books or online resources, again after you have thought about
the problems on your own. There are two requirements: first, cite your collaborators
fully and completely (e.g., “Jane explained to me what is asked in Question 2.1”).
Second, write your solution independently: close the book and all of your notes, and
send collaborators out of the room, so that the solution comes from you only. See the
Academic Integrity Section on the course site for more information: https://www.cs.
cmu.edu/~aarti/Class/10315_Fall19/index.html

• Submitting your work:

– Gradescope: For written problems such as short answer, multiple choice, deriva-
tions, proofs, or plots, we will be using Gradescope (https://gradescope.com/).
Please use the provided template. Submissions can be handwritten onto the tem-
plate, but should be labeled and clearly legible. If your writing is not legible, you
will not be awarded marks. Alternatively, submissions can be written in LaTeX.
Regrade requests can be made, however this gives the TA the opportunity to
regrade your entire paper, meaning if additional mistakes are found then points
will be deducted. Each derivation/proof should be completed on a separate page.
For short answer questions you should not include your work in your solution.
If you include your work in your solutions, your assignment may not be graded
correctly by our AI assisted grader.

For multiple choice or select all that apply questions, shade in the box or circle in the
template document corresponding to the correct answer(s) for each of the questions. For
LATEXusers, use � (blacksquare) and (blackcircle) for shaded boxes and circles, and don’t
change anything else.

1Compiled on Wednesday 2nd October, 2019 at 22:47

1

https://piazza.com/class/jzqjbzyfzu32p2
https://www.cs.cmu.edu/~aarti/Class/10315_Fall19/index.html
https://www.cs.cmu.edu/~aarti/Class/10315_Fall19/index.html
https://gradescope.com/


Instructions for Specific Problem Types

For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

 Aarti Singh

# Marie Curie

# Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in
the new answer:

Select One: Who taught this course?

 Aarti Singh

# Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are scientists?

� Stephen Hawking

� Albert Einstein

� Isaac Newton

� I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and
bubble in the new answer(s):

Select all that apply: Which are scientists?

� Stephen Hawking

� Albert Einstein

� Isaac Newton

��@@� I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully
included in the given space. You may cross out answers or parts of answers, but the final
answer must still be within the given space.

Fill in the blank: What is the course number?

10-315 10-��SS7315

2



1 Bayes Classifiers (55 points)

1.1 Optimal classifier (10 points)

In Lecture 2 we stated that the optimal classifier for binary classification takes the following
form

f ∗(x) = argmax
Y=y

P (Y = y|X = x), (1)

here we are going to prove this.

Let be f a prediction rule, for binary classification, the loss is given by

loss(f(X), Y ) = 1{Y 6=f(X)} =

{
1 if f(X) 6= Y

0 if f(X) = Y

In order to prove (1), we first define the risk of a prediction rule f as:

R(f) = E[loss(Y, f(X))],

and our objective is to find the function f ∗ that minimizes this risk among all possible
functions. In other words

f ∗ = argmin
f

R = argmin
f

E[loss(Y, f(X))]

1. (3 points) Let be Y ∈ {c1, c2} the two class values that this random variable can take
and X ∈ X , being X the input space. Starting from E[loss(Y, f(X))] expand the
expectation (E) in terms of two indicator functions 1{f(x)=c1} and 1{f(x)=c2}.

Hint: The loss function can also be written as:

loss(Y, f(X)) =


1 if f(X) = c1 and Y = c2

1 if f(X) = c2 and Y = c1

0 if f(X) = Y

Solution

E[loss(y, f(X))] = E[1{f(X)6=Y }]

= EXEY |X
[
1{f(X)6=Y }

]
= EXP(1{f(X)6=Y })

= EX
[
P(y = c2|x)1f(x)=c1 +P(y = c1|x)1f(x)=c2

]

2. (3 points) Using the expression that you just derived, rewrite it in terms of a single
indicator function 1{f(x)=c1}. What is the expression that you obtained? Select one:

3



EX
[
P (Y = c1|X = x) + [P (Y = c2|X = x)− P (Y = c1|X = x)] · 1{f(x)=c1}

]
EX
[
P (Y = c1|X = x) + [P (Y = c2|X = x) + P (Y = c1|X = x)] · 1{f(x)=c1}

]
EX
[
P (Y = c1|X = x) + [P (Y = c2|X = x)− P (Y = c2|X = x)] · 1{f(x)=c1}

]
EX
[
[P (Y = c2|X = x)− P (Y = c1|X = x)] · 1{f(x)=c1}

]
Solution 1.

3. (4 points) Finally, you can take the argmin of the expression that you just selected (i.e
E[loss(Y, f(X))]). Write down the expression that you obtained for f ∗ = argmin

f
E[loss(Y, f(X))]

and re-write it in such a way that you can obtain (1).

Solution

f∗ = argmin
f

EX

[
P (Y = c1|X = x) + [P (Y = c2|X = x)− P (Y = c1|X = x)] · 1{f(x)=c1}

]
= argmin

f
EX

[
[P (Y = c2|X = x)− P (Y = c1|X = x)] · 1{f(x)=c1}

]
=

{
c1 if P (y = c1|x) > P (y = c2|x)

c2 otherwise

= argmax
Y=y

P (Y = y|X = x)

1.2 MLE vs. MAP estimation of probabilities (7 points)

Probability estimation is a fundamental problem when using the Bayes rule for classification
as in (1). Let’s assume that the following dataset of observations of a Bernoulli process
(H/T outcomes) is given: D = {H,H,H,H,H}. In addition to the data, we also have a
prior about the probability of observing H or T as an outcome. The prior is quantified in
terms of pseudo-observations for H and T, where we have α = 3 pseudo-observations for the
outcome H, and β = 2 pseudo-observations for the outcome T (note: a pseudo-observation is
not a real observation, but rather a sort of “imaginary” observation that reflects our beliefs).

Since we know that data in D is drawn from a Bernoulli distribution, we can safely assume
that each xi ∈ D is xi ∼ Bernoulli(x|θ). Our problem is therefore the estimation of the
parameter θ (where θ is the probability of H, why?).

(2 points)Select one: The MLE estimator for θ is

# 0.5

# 0

4



# 1

# 3/2

Solution 1

P (D | θ) = θH(1− θ)T .
MLE: θ = H

H+T
.

(3 points)Select one: Using a Beta(θ|α, β) distribution to model the prior over
the parameter θ, the MAP estimate for θ is

# 3/2

7/8

1

# 6/8

Solution 7/8

Prior: θ ∼ Beta(θ | α, β). Then P (θ | α, β) = θα−1(1−θ)β−1

B(α,β)
.

Likelihood: P (D | θ) = θH(1− θ)T .
Posterior:

P (θ | D) = P (θ | α, β) · P (D | θ)/P (D | α, β)

∝ P (θ | α, β) · P (D | θ)

=
θα−1(1− θ)β−1

B(α, β)
· θH(1− θ)T

∝ θα+H−1(1− θ)β+T−1

MAP: θ = α+H−1
α+H+β+T−2 .

(2 points) Fill in the blank: Using a Beta(θ|1, 1) distribution to model the
prior over the parameter θ, the MAP estimate for θ is:

Solution The same as MLE.
P (θ | α = 1, β = 1) = U(0, 1).
Uniform prior results in posterior equal to likelihood.

5



i ni Possible Values
00 2 b, a
01 - continuous
02 - continuous
03 4 u, y, l, t
04 3 g, p, gg
05 14 c, d, cc, i, j, k, m, r, q, w, x, e, aa, ff
06 9 v, h, bb, j, n, z, dd, ff, o
07 - continuous
08 2 t, f
09 2 t, f
10 - continuous
11 2 t, f
12 3 g, p, s
13 - continuous
14 - continuous

label 2 ”+”/”-”

Table 1: Description of attribute information in provided data files

1.3 Implementing Näıve Bayes (38 points)

In this question you will implement a Näıve Bayes classifier for a simple credit-screening
problem. In the provided input files you will find a processed collection of old applications
for credit cards along with a corresponding label stating whether they were accepted or
rejected by the bank. The goal in this problem is to learn the underlying function of these
decisions and be able to classify (label) any new application as accepted or rejected.

In the data files, each line (credit card application data) consists of 16 data points separated
by a comma “,”. The first 15 data points represent attribute values and the last point is the
corresponding label for that instance data point. Table 1 gives more information about each
attribute in terms of the type and values it can take. In each of the data files, all attribute
names and values have been changed to meaningless symbols to protect confidentiality of
the data. The features are a mix of multi-nominal and continuous attributes.

Each credit card application in your data can be therefore modeled as a feature vector
X = {x0, x1, x2, x3, . . . , x14} that includes different types of values. The general assumption is
that the features are conditionally independent given the application label. We can therefore
employ a Näıve Bayes classifier.

Note that, using the Bayes rule, your class prediction is:

ŷX = argmax
y

P (X|y) · P (y), (2)

where the class y is the screening result, “+” (accepted) or “-” (rejected). Since we are using

6



the Näıve Bayes model, the following holds:

P (X|y) =
∏
xi∈X

P (xi|y). (3)

Therefore, the problem becomes the estimation of the coordinate-wise conditional probabil-
ities P (xi|y), for i ∈ {0, 2, 3, . . . , 14} as well as estimating the class prior distributions, and
combining them with the Bayes rule to find the most probable class for given input data.
Since the feature vector X includes hybrid data, you’ll need to adopt different approaches
for estimating the different probability distributions. To simplify your task and guide your
work, we broke down the problem into separate tasks described below, distinguishing be-
tween continuous- and discrete-valued features, considering training, classification, and test-
ing. Each task includes some questions that will also help you to make decisions in your
implementation. In practice, you will have to make a few design choices and justify them.
For obtaining full score in this section, you should turn in your final code (upload your code
on Gradescope), as well as answer all the questions below (upload your handout on Grade-
scope). It is important that the code you submit and your answers below are consistent with
each other!

Tasks Starter Code for parsing data and evaluating the classifier will be made available soon
through Piazza!

1. Pre-processing

You should start by reading the training data file training.dat and parsing it line-
by-line to collect data about each feature separately. As mentioned earlier, data points
are separated by a comma “,”. For each of the 15 features you want to construct a
feature values structure, which is simply a tuple (n, data):

• n, is an integer representing the range of values for the given feature. You can
conveniently set n to -1 to indicate that the feature is a real number (encoded as
a float).

• data is an array of all values of the feature as per the data set. For continuous
features this is an array of floats, and for discrete features with n possible values
this is an array of integers ∈ 0, 1, . . . n− 1 that map to the possible values of the
feature. It is up to you how to represent missing data (associated to a ’?’ symbol
in the data file) in either case.

The last, 16th attribute in each data entry is the class label. You should collect the
labels separately into an array labels that you will use to estimate the probability
distributions for all attributes.

(2 points) How should your classifier deal with a missing entry in a feature vector X
while reading the data? (Note that this is not an open question) Select One:

# It can discard the entry corresponding to ‘?’ as if the data for that specific
feature didn’t exist.

7



# It should treat ’?’ as an extra value and include it in the data used for proba-
bility distribution estimation.

# It has to discard an equal number of data points from all features.

# It has to discard the entire data entry X.

Solution 1 because the probabilities are conditionally independent, so omitting an
attribute will not affect other calculations. Some implementations could do ”4”, but
in our case it’d be wasteful.

2. Estimating Probability Distributions for Continuous-Valued Features

For continuous-valued features, write a function estimate continuous(feature values,

labels) that takes as inputs a feature structure feature values (described above)
which contains all training data for that attribute, and labels, the array of corre-
sponding labels.
estimate continuous(feature values, labels) should return a pair of tuples, (Pi|acc,
Pi|rej), where, for feature i, Pi|acc provides the estimated values of the parameters for
the probabilistic distribution of class accepted, and Pi|acc provides the estimated pa-
rameter values for the distribution of class rejected. Parameter estimation for these
continuous distributions must be done using Maximum Likelihood Estimation.

(2 points) We do parametric estimation of probability distributions. This
makes the task simple(r), but we need to set an inductive bias by making
a hypothesis about the class of the distribution (e.g., Gaussian, Bernoulli,
Binomial). In absence of additional knowledge about the data, what could
be a suitable choice for the class of the distribution that you should assume in
estimate continuous(feature values, labels)? How many parameters
will you have to estimate for each one of such distributions?

Solution Univariate Gaussian distribution because the values are continuous and we consider
individual attributes, a univariate Gaussian distribution is defined by two parameters.

(8 points) What are the parameters that your function
estimate continuous(feature values, labels) returns when ran on the
attribute with identifier (i = 10) in the table?

P10|acc

P10|rej

8



3. Estimating Probability Distributions for Discrete-Valued Features

For discrete-valued features, write a function estimate discrete(feature values,

labels) that takes as inputs a feature structure (described above) feature values

which contains all training data for that feature, and labels, the array of corresponding
labels. estimate discrete(feature values, labels) should return a pair of tuples,
(Pi|acc, Pi|rej), where, for feature i, Pi|acc provides the estimated values of the parameters
for the probabilistic distribution of class accepted, and Pi|acc provides the estimated
parameter values for the distribution of class rejected.

(2 points) What is the most suitable functional form that you should assume
for the parametric probability distribution in estimate discrete(feature values,

labels)? Note that the choice should be suitable to represent discrete ran-
dom variables that can take on n possible values, n ≥ 2. Given your choice,
how many parameters will you have to estimate for each distribution?

Solution Should assume Multinomial distribution since we do not know the number of values
and are not sure if they represent multiple trials. However, Multinoulli is an acceptable answer
as well. Either case, parameters will be 2n.

Again, you must use Maximum Likelihood Estimation to estimate the parameters
of the parametric probability distributions. However, this time, your probability esti-
mation will be presented differently, each probability distribution is parametrized into
a tuple of size n such that Pi|y[j] = P (xi = j|y) where j is the j-th possible value of
the feature.

(4 points) Run your function estimate discrete(feature values, labels)

on the attribute with (i = 0) in Table 1. What is the log-probability that
x0 = 1 (’a’, in the specific case)? 2

logPx0|acc[1]

logPx0|rej[1]

(4 points) Run your function estimate discrete(feature values, labels)

on the attribute with (i = 5) in Table 1. What is the log-probability that
x5 = 8 (’q’)?

2Note on log-probability vs probability: Whenever implementing probability distributions in code,
it is always advisable to work with log-probabilities instead of probabilities. Raw probabilities can be very
small, especially if many small probabilities are multiplied together. This can cause numerical issues. Instead,
we should represent log probabilities and add them whenever raw probabilities need to be multiplied.

9



logPx5|acc[8]

logPx5|rej[8]

4. Estimating Class Distribution

For the case of the class prior probability distribution, write a function probability acc(labels)

that takes in input the array of labels from the data set and uses it to estimate the
prior probability that any credit card application would be accepted. In this case, you
must use a MAP estimate for the parameter of the distribution. At this aim, you
are provided with a Beta prior for the parameters, where the hyper-parameters of the
Beta distribution are α = 7 and β = 9.

(2 points) Given that you are asked to use a MAP estimate, and a Beta prior
is given for the parameters, what is your choice for the parametric class
distribution? (e.g., Gaussian, Binomial, Bernoulli). Justify your answer.
How many parameters does it take?

Solution Bernoulli, it takes one parameter

(4 points) Run your function probability acc(labels) on the provided
training data. What is the estimated log-probability that a credit card ap-
plication is accepted?

Solution

5. Classify new instances

Write a function estimate(trained model,X) that takes in input:

• trained model: a tuple of 16 elements, where first 15 are the attribute probability
estimations computed using estimate discrete and estimate continuous, and
the last one is the value returned from probability acc.

• X: an unlabeled feature vector represented as an array of 15 attribute values. Con-
tinuous attributes are represented as floats and discrete attributes are represented
as integers ∈ 0, 1, . . . n− 1 that map to the possible values of the attribute.

estimate(trained model,X) should return a tuple of three values class, log prob acc,

log prob rej:

10



• class: a string representing the chosen class ”+” if the classifier accepts the
application with the provided attributes and ”-” otherwise.

• log prob acc: the conditional log-probability of the feature vector X given that
the application is accepted, P (X|y = acc).

• log prob rej: the conditional log-probability of the feature vector X given that
the application is rejected, P (X|y = rej).

(1 points) Run your functions on the following values of X (after mapping them to the
correct representation) and report the classification and the log-probabilities returned:

(a) [b, 28.25, 0.875, u, g,m, v, 0.96, t, t, 03, t, g, 396, 0]

Solution

(b) [b, 42.75, 4.085, u, g, aa, v, 0.04, f, f, 0, f, g, 108, 100]

Solution

(c) [a, 46.08, 3, u, g, c, v, 2.375, t, t, 8, t, g, 396, 4159]

Solution

6. Evaluate your Classifier

Last part in building any machine learning model is evaluating it. You are pro-
vided with an incomplete function ClassificationEvaluation(Filename) that you
should complete using the functions you implemented above. You will then run
ClassificationEvaluation() using the training dataset in training.dat and test-
ing dataset in testing.dat. Report the errors below (2 points).

Training Error

Solution

Testing Error

Solution

(3 points) Which Error is more representative of the error we would expect on a new
collection of applications? Does Naive Bayes attempt to minimize the training error?
Select One:

# Training, Yes

# Training, No

# Testing, Yes

# Testing, No

11



Solution C.

2 Logistic Regression (45 points)

2.1 Softmax regression (35 points)

In this question, we will derive the “multi-class logistic regression” algorithm (the MLE and
its gradient). We assume the dataset D is d-dimensional (has d features) with n entries.

Given a training set {(xi, yi)|i = 1, . . . , n} where xi ∈ Rd+1 is a feature vector and yi ∈ Rk

is a binary (one-hot) vector with k entries (classes). Note that in a one-hot vector, the
corresponding class label is 1 and all the rest entries are 0s. For example, if the label of X
is 3, then the corresponding y should look something like [0, 0, 1, ..., 0] ∈ Rk

Note that xi is an vector of length (d + 1) because we pad the d features by 1 to vectorize
computing the bias, that is xi = [1, (xi)′], where (xi)′ ∈ D.

We want to find the parameters ŵ ∈ Rk×(d+1) (one weight vector for each class) that maximize
the likelihood for the training set, assuming a parametric model of the form

p(yic = 1|xi;w) =
exp(wTc x

i)∑
c′ exp(wTc′x

i)
. (4)

Note that exp(wTc x
i)∑

c′ exp(w
T
c′x

i)
is always between 0 and 1, and

∑
c p(y

i
c = 1|xi;w) is always 1, which

are desired properties of a probability distribution. Therefore, exp(wTc x
i)∑

c′ exp(w
T
c′x

i)
is also known as

the softmax function.

Since we know the probability sums to 1, we don’t care about predicting the probability of
the last (kth) class, since we can calculate p(yik = 1|xi;w) by:

p(yik = 1|xi;w) = 1−
∑k−1

c′=1 exp(wTc′x
i)∑

c′ exp(wTc′x
i)
. (5)

1. (10 points) Show the equivalence between the two equations (6) and (7). Provide a
short justification for why each line follows from the previous one in your derivation.
(This is how we store less weights by making use of the fact that the probabilities sum
to 1)

p(yic = 1|xi;w) =
exp(wTc x

i)∑
c′ exp(wTc′x

i)
. (6)

=


exp(wTc x

i)

1+
∑k−1
c′=1

exp(wT
c′x

i)
, if c < k

1

1+
∑k−1
c′=1

exp(wT
c′x

i)
, if c = k

(7)

12



Solution Note that adding the same value to all the weights does not affect the value of the
equation. Therefore, we shift the kth weight to 0.

p(yic = 1|xi;w) =
exp(wT

c x
i)∑

c′ exp(wT
c′x

i)

=
exp((wc′ − wk)Txi)∑
c′ exp((wc′ − wk)Txi)

.

=
exp((wc′ − wk)Txi)

1 +
∑k−1

c′=1 exp((wc′ − wk)Txi)
.

=


exp(wT

c xi)

1+
∑k−1

c′=1
exp(wT

c′x
i)
, if c < k

1

1+
∑k−1

c′=1
exp(wT

c′x
i)
, if c = k

This shows that one can store only k − 1 weight vectors by subtracting the kth vector from all
other ones ((6) implies (7)). Equivalently, in logistic regression, it is acceptable to set one of the
weight vectors to 0, and so you get 1 after exponentiating it ((7) implies (6)).

2. (5 points) Derive the conditional log likelihood for softmax regression. For the sake of
simplicity, we only consider eq. (6) as p(yjc | xj, w).

`(w) ≡ ln
n∏
j=1

p(yjc | xj, w) [here c is the true class of xj] (8)

=
n∑
j=1

k∑
c=1

[
yjc
(
wTc x

j
)
− yjc ln

(∑
c′

exp(wTc′x
j))

)]
. (9)

Solution

`(w) ≡ ln

n∏
j=1

p(yjc | xj , w) [here c is the true class of xj ]

=

n∑
j=1

k∑
c=1

yic ln p(yjc | xj , w)

=

n∑
j=1

k∑
c=1

[
yjc ln

exp(wT
c x

j)∑
c′ exp(wT

c′x
j)

]

=

n∑
j=1

k∑
c=1

[
yjc
(
wT

c x
j
)
− yjc ln

(∑
c′

exp(wT
c′x

j))

)]
.

3. (5 points) Next, we will derive the gradient of the previous expression with respect to

the cth class of the weight matrix wc, i.e., ∂`(w)
∂wc

, where `(w) denotes the log likelihood

13



from (9). We will perform a few steps of the derivation, and then ask you to do one
step at the end. If we take the derivative of Expression 9 with respect to wc, we get
the following expression:

∇wc`(w) = ∇wc

n∑
j=1

k∑
c=1

[
yjc
(
wTc x

j
)
− yjc ln

(∑
c′

exp(wTc′x
j))

)]
(10)

The blue expression is linear in wc, so it can be simplified to
∑n

j=1 y
j
cx

j. For the red
expression, first we consider a fixed j ∈ [1, n]. Use chain rule to verify that

∇wc

k∑
c=1

yjc ln

(∑
c′

exp(wTc′x
j))

)
(11)

=
exp(wTc x

j)∑
c′ exp(wTc′x

j)
xj (12)

Solution First note that the c in ∇wc
is not the same c in

∑k
c=1 y

j
c ln

(∑
c′ exp(wT

c′x
j))
)
. The

later c iterates over 1 to k, and so the latter term is independent of c.

∇wc

k∑
c=1

yjc ln

(∑
c′

exp(wT
c′x

j))

)
= ∇wc

( k∑
c=1

yjc

)
ln

(∑
c′

exp(wT
c′x

j))

)

= ∇wc ln

(∑
c′

exp(wT
c′x

j))

)

=
exp(wT

c x
j)∑

c′ exp(wT
c′x

j)
xj

= p(yjc = 1 | xj ;w) · xj

4. (5 points) Now use Equation 12 (and the previous discussion) to show that overall,
Expression 10, i.e., ∇wc`(w), is equal to

∇wc`(w) =
n∑
j=1

xj(yjc − p(yjc = 1 | xj;w)) (13)

Solution
Note that equation 12 equals p(yjc = 1 | xj ;w) · xj .
So,

∑n
j=1

exp(wT
c x

j)∑
c′ exp(w

T
c′
xj)

xj =
∑n
j=1 p(y

j
c = 1 | xj ;w) · xj .

Plugging into 10, we get

∇wc`(w) =

n∑
j=1

xj(yjc − p(yjc = 1 | xj ;w))

14



5. (5 points) Since the log likelihood is concave, it is easy to optimize using gradient
ascent. Derive the update rule for gradient ascent with respect to learning rate for
wc w.r.t. η, yj, xj, and p(yj = 1 | xj;w(t)). Feel free to index into the vectors using
subscripts.

Solution

wt+1
c = wt

c + η

n∑
j=1

xj(yjc − p(yjc = 1 | xj ;w))

Note that c indexes the class i.e. c ∈ {1, ..., k}.
You should use only one of c or i but not both.

6. (5 points) Explain how the logistic regression you learned in class relate to the softmax
regression you derived.

Solution Set k = 2 in logistic regression, and use the weight subtraction technique in equation 7.

p(yic = 1|xi;w) =
exp(wTxi)∑
c′ exp(wTxi)

.

=

{
exp(wT xi)

1+exp(wT xi)
, if c = 1

1
1+exp(wT xi)

, if c = 0

15



2.2 General questions about logistic regression (10 points)

1. Explain why logistic regression is a discriminative classifier (as opposed to a generative
classifier such as Naive Bayes).

Solution Logistic regression directly learns a model for P (Y |X), as opposed to learning models
for P (X)P (X|Y ). It does not learn a model of the data P (X). Therefore, logistic regression is a
discriminative classifier.

2. What does the decision boundary of logistic regression look like when we have quadratic
features? Justify your answer.

Recall the prediction rule for logistic regression is if p(yj = 1 | xj) > p(yj = 0 | xj),
then predict 1, otherwise predict 0.

(hint: consider the decision boundary as a function of w0, w1, w2, w3, w4 and x1, x2, x1x2, x
2
1, x

2
2).

Solution It is a Paraboloid. It either looks like a cone or a saddle. OR it can be a hyper-plane.

16



Collaboration Questions Please answer the following:

1. Did you receive any help whatsoever from anyone in solving this assignment?
Yes / No.

• If you answered ‘yes’, give full details:

• (e.g. “Jane Doe explained to me what is asked in Question 3.4”)

2. Did you give any help whatsoever to anyone in solving this assignment?
Yes / No.

• If you answered ‘yes’, give full details:

• (e.g. “I pointed Joe Smith to section 2.3 since he didn’t know how to proceed
with Question 2”)

3. Did you find or come across code that implements any part of this assignment ?
Yes / No. (See below policy on “found code”)

• If you answered ‘yes’, give full details:

• (book & page, URL & location within the page, etc.).

17


	Bayes Classifiers (55 points)
	Optimal classifier (10 points)
	MLE vs. MAP estimation of probabilities (7 points)
	Implementing Naïve Bayes (38 points)

	Logistic Regression (45 points)
	Softmax regression (35 points)
	General questions about logistic regression (10 points)


