SVM Review

Siddharth Ancha

Slides from Aarti's Lectures

At Pittsburgh G-20 summit ...

Linear classifiers – which line is better?

Pick the one with the largest margin!

Parameterizing the decision boundary

Parameterizing the decision boundary

Distance of closest examples from the line/hyperplane

margin =
$$\gamma$$
 = 2a/ $\|$ w $\|$

Step 1: **w** is perpendicular to lines since for any x_1 , x_2 on line **w**.($\mathbf{x}_1 - \mathbf{x}_2$) = 0

$$0 \neq x_1$$

$$X_1$$

$$X_2$$

margin =
$$\gamma$$
 = 2a/ $\|$ w $\|$

Step1: w is perpendicular to lines

Step 2: Take a point x on w.x + b = -a and move to point x_+ that is γ away on line w.x+b = a

$$\mathbf{x}_{+} = \mathbf{x}_{-} + \gamma \mathbf{w} / \| \mathbf{w} \|$$

$$\mathbf{w}.\mathbf{x}_{+} = \mathbf{w}.\mathbf{x}_{-} + \gamma \mathbf{w}. \mathbf{w} / \| \mathbf{w} \|$$

$$\mathbf{a}-\mathbf{b} = -\mathbf{a}-\mathbf{b} + \gamma \| \mathbf{w} \|$$

$$2\mathbf{a} = \gamma \| \mathbf{w} \|$$

equations by a)

11

Support Vector Machines

 $\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w}$ s.t. $(\mathbf{w}.\mathbf{x}_j+b) \mathbf{y}_j \ge 1 \quad \forall j$

Solve efficiently by quadratic programming (QP)

- Quadratic objective, linear constraints
- Well-studied solution algorithms

Support Vectors

Linear hyperplane defined by "support vectors"

Moving other points a little doesn't effect the decision boundary

only need to store the support vectors to predict labels of new points

For support vectors $(\mathbf{w}.\mathbf{x}_j+b)$ $\mathbf{y}_j=1$

What if data is still not linearly separable?

Allow "error" in classification

Soft margin approach

$$\min_{\mathbf{w},b,\{\xi_{j}\}} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$

$$s.t. (\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$$

$$\xi_{j} \ge 0 \quad \forall j$$

 ξ_j - "slack" variables = (>1 if x_j misclassifed) pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Soft-margin SVM

Soften the constraints:

$$(\mathbf{w}.\mathbf{x}_{j}+b) \ \mathbf{y}_{j} \geq 1-\xi_{j} \quad \forall j$$
$$\xi_{i} \geq 0 \quad \forall j$$

Penalty for misclassifying:

$$C \xi_i$$

How do we recover hard margin SVM?

Slack variables – Hinge loss

Notice that

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Slack variables – Hinge loss

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Regularized hinge loss

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} + C \sum_{j} (1-(\mathbf{w}.x_j+b)y_j)_+$$

SVM vs. Logistic Regression

SVM: **Hinge loss**

$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

<u>Logistic Regression</u>: <u>Log loss</u> (-ve log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$

n training points
$$(\mathbf{x}_1, ..., \mathbf{x}_n)$$

d features \mathbf{x}_j is a d-dimensional vector

Primal problem:

$$\min_{\mathbf{w},b} \quad \frac{1}{2}\mathbf{w}.\mathbf{w} \\
\left(\mathbf{w}.\mathbf{x}_j + b\right) y_j \ge 1, \ \forall j$$

w - weights on features (d-dim problem)

- Convex quadratic program quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

Constrained Optimization

$$\min_x x^2$$
 s.t. $x \ge b$

$$x^* = \max(b, 0)$$

Constraint active and tight 3

Constrained Optimization – Dual Problem

 α = 0 constraint is inactive α > 0 constraint is active

Primal problem:

$$\min_x x^2$$
 s.t. $x > b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Dual problem:

$$\max_{\alpha} d(\alpha)$$
 $\min_{x} L(x, \alpha)$ s.t. $\alpha \ge 0$

Dual problem:
$$d^* = \max_{\alpha} d(\alpha) = \max_{\alpha} \min_{x} L(x, \alpha)$$
 s.t. $\alpha > 0$ s.t. $\alpha > 0$

Notice that

Primal problem: p* =
$$\min_x x^2$$
 = $\min_x \max_{\alpha \geq 0} L(x, \alpha)$ s.t. $x \geq b$

Why?
$$L(x,\alpha) = x^2 - \alpha(x-b)$$

$$\max_{\alpha \ge 0} L(x, \alpha) = x^2 - \min_{\alpha \ge 0} \alpha(x - b) = \begin{cases} x^2 & \text{if } x \ge b \\ \infty & \text{if } x < b \end{cases}$$

Primal problem: p* =
$$\min_x x^2$$

s.t. $x \ge b$

Dual problem: d* =
$$\max_{\alpha} d(\alpha)$$
 s.t. $\alpha > 0$

Weak duality: The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \le p^*$

To see this, recall
$$L(x, \alpha) = x^2 - \alpha(x - b)$$

For every feasible x (i.e. $x \ge b$) and feasible α (i.e. $\alpha \ge 0$), notice that

$$d(\alpha) = \min_{x} L(x, \alpha) \le x^2 - \alpha(x-b) \le x^2$$

Since this holds for all feasible x, in particular it holds for x^* achieving the min of p^* , hence $d(a) \le p^*$ for all feasible $\alpha \ge 0$.

Primal problem: p* =
$$\min_x x^2$$
 Dual problem: d* = $\max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

- Weak duality: The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \le p^*$
- > Strong duality: d* = p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* :

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero.
- 2. $x^* \ge b$ i.e. x^* is primal feasible
- 3. $\alpha^* \geq 0$ i.e. α^* is dual feasible
- 4. $\alpha^*(x^* b) = 0$ (called as complementary slackness)

We use the first one to relate x^* and α^* . We use the last one (complimentary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

Solving the dual

Solving:

$$L(x, \alpha)$$
 $\max_{\alpha} \min_{x} x^2 - \alpha(x - b)$ s.t. $\alpha \geq 0$

Find the dual: Optimization over x is unconstrained.

$$\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2} \qquad L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)$$
$$= -\frac{\alpha^2}{4} + b\alpha$$

Solve: Now need to maximize $L(x^*,\alpha)$ over $\alpha \ge 0$ Solve unconstrained problem to get α' and then take $max(\alpha',0)$

$$\frac{\partial}{\partial \alpha} L(x^*, \alpha) = -\frac{\alpha}{2} + b \implies \alpha' = 2b$$

$$\Rightarrow \alpha^* = \max(2b, 0) \implies x^* = \frac{\alpha^*}{2} = \max(b, 0)$$

 α = 0 constraint is inactive, α > 0 constraint is active and tight 10

n training points, d features $(\mathbf{x}_1, ..., \mathbf{x}_n)$ where \mathbf{x}_i is a d-dimensional vector

• <u>Primal problem</u>: minimize_{w,b} $\frac{1}{2}$ w.w $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j$

w - weights on features (d-dim problem)

• <u>Dual problem</u> (derivation):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

 α - weights on training pts (n-dim problem)

Dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \ \forall j$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

If we can solve for α s (dual problem), then we have a solution for \mathbf{w} ,b (primal problem)

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

Dual problem is also QP Solution gives α_j s \longrightarrow

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

What about b?

Dual SVM: Sparsity of dual solution

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few α_i s can be non-zero: where constraint is active and tight

$$(\mathbf{w}.\mathbf{x}_j + \mathbf{b})\mathbf{y}_j = \mathbf{1}$$

Support vectors – training points j whose α_i s are non-zero 14

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

Dual problem is also QP Solution gives α .s Solution gives α_i s

Use support vectors with $\alpha_k > 0$ to compute b since constraint is tight $(w.x_{k} + b)y_{k} = 1$

$$\mathbf{w} = \sum_i lpha_i y_i \mathbf{x}_i$$
 $b = y_k - \mathbf{w}.\mathbf{x}_k$ for any k where $lpha_k > 0$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$