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At#Pittsburgh#G!20#summit#…
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Linear'classifiers'– which%line%is%
better?
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Pick%the%one%with%the%largest%margin!
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Parameterizing+the+decision+boundary
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Parameterizing the$decision$boundary
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Maximizing)the)margin
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Distance)of)closest)examples)
from%the%line/hyperplane

Step%1:"w"is#perpendicular#
to#lines#since#for#any#x1,"x2
on#line##w.(x1 – x2)"="0
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Maximizing)the)margin
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Step1:w"is#perpendicular#
to#lines

Step%2:"Take"a"point"x! on#
w.x +b#=#!a"and"move"to"
point&x+ that$is$! away$on$
line%w.x+b ="a"

x+ ="x! +"!w/ǁwǁ
w.x+ ="w.x! +"!w."w/ǁwǁ

a!b ="!a!b"+"!ǁwǁ
2a#=#!ǁwǁ

margin'='! ="2a/ǁwǁ



Maximizing)the)margin
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Distance)of)closest)examples)
from%the%line/hyperplane
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! Smaller'margin'! larger&ǁwǁ



Maximizing)the)margin
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max$$! ="2a/ǁwǁ
w,b

s.t."(w.xj+b)"yj ≥"a !j"

margin'='! ="2a/ǁwǁ

Note: ‘a’$is$arbitrary$(can$normalize$
equations*by*a)

Distance)of)closest)examples)
from%the%line/hyperplane
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Support'Vector'Machines
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w.x +"b">"0 w.x +"b"<"0

min$$w.w
w,b

s.t."(w.xj+b)"yj ≥"1 !j"

Solve&efficiently&by&quadratic&
programming)(QP)
– Quadratic)objective, linear'

constraints
– Well!studied'solution'

algorithms
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Support'Vectors
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w.x +"b">"0 w.x +"b"<"0
Linear'hyperplane defined&by&
“support'vectors”

Moving'other'points a"little"
doesn’t(effect(the(decision(
boundary)

only%need%to%store%the%
support'vectors'to'predict'
labels&of&new&points

For$support$vectors
(w.xj+b)"yj ="1



What%if%data%is%still%not%linearly%
separable?
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min$$w.w +"C"Σξjw,b,{ξj}"

s.t."(w.xj+b)"yj ≥"1!ξj !j
ξj ≥"0 !j

j

Allow%“error”%in%classification

ξj" ! “slack”(variables(
="(>1"if"xj misclassifed)

pay$linear$penalty$if$mistake
C""! tradeoff(parameter((chosen(by(

cross!validation)
Still%QP%!

Soft margin approach



Soft!margin'SVM
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(w.xj+b)"yj ≥"1!ξj !j
ξj ≥"0 !j

Soften'the'constraints:

Penalty(for(misclassifying:

C"ξj

How do we recover hard
margin SVM?

Set$C$=$∞w
.x
+"
b"
="
1

w
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b"
="
!1



18

w
.x
+"
b"
="
1

w
.x
+"
b"
="
!1

Notice'that

Slack&variables&– Hinge&loss



Slack&variables&– Hinge&loss
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Hinge&loss

0!1"loss

0!1 1

min$$w.w +"C"Σξjw,b,{ξj}"

s.t."(w.xj+b)"yj ≥"1!ξj !j
ξj ≥"0 !j

j

Regularized+hinge+loss

min$$w.w +"C"Σ(1!(w.xj+b)yj)+w,b j



SVM$vs.$Logistic$Regression
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SVM : Hinge&loss

0!1"loss

0!1 1

Logistic(Regression :"Log$loss$ ("!ve log$conditional$likelihood)

Hinge&lossLog$loss



SVM$– linearly(separable(case

• Convex'quadratic'program'– quadratic)objective,)linear)
constraints

• But$expensive$to$solve$if$d$is$very$large
• Often&solved&in&dual&form&(n!dim$problem)

2

w – weights on features (d-dim problem)

n"training"points (x1,"…,"xn)"
d"features xj is#a#d!dimensional*vector*

• Primal'problem:

w
.x
+"
b"
="
0



Constrained+Optimization
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Constraint)inactive Constraint)active)
and$tight

x⇤ = max(b, 0)



Constrained+Optimization+– Dual%Problem
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Moving'the'constraint'to'objective'function
Lagrangian:

Dual%problem:

! ="0"constraint"is"inactive
! >"0""constraint"is"active

b"+ve

Primal'problem:



Connection(between(Primal(and(Dual
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Dual%problem:%d*#=

Primal'problem:'p* =

=

Notice'that

=

Why?



Connection(between(Primal(and(Dual
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Primal'problem:'p* ="

! Weak%duality:%The$dual$solution$d*$lower$bounds$the$primal$
solution(p*(i.e.(d*(≤((p*

To#see#this,#recall#

For$every$feasible$x$(i.e.$x$≥$b)$and$feasible$α"(i.e.%α"≥"0)","notice""
that

d(α)#=" ≤""x2 – !(x!b)#≤##x2

Since&this&holds&for&all&feasible&x,#in#particular#it#holds#for#x*#####
achieving)the)min)of)p*,)hence))d(a) ≤"p*"for"all"feasible"α"≥"0.

Dual%problem:%d*#=



Connection(between(Primal(and(Dual
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Primal'problem:'p* ="

! Weak%duality:%The$dual$solution$d*$lower$bounds$the$primal$
solution(p*(i.e.(d*(≤((p*

Dual%problem:%d*#=

! Strong'duality:'d*#=#p*#holds#often#for#many#problems#of#
interest'e.g.'if'the'primal'is'a'feasible'convex'objective'with'linear'
constraints
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Connection(between(Primal(and(Dual
What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.
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Solving(the(dual

Find%the%dual: Optimization*over%x%is%unconstrained.

Solve:"Now"need$to$maximize$L(x*,α)$over$α$≥$0$
Solve&unconstrained&problem&to&get&α’ and$then$take$max(α’,0)

! ="0"constraint"is"inactive,"α">"0""constraint"is"active"and"tight

) ↵0 = 2b



Dual%SVM%– linearly(separable(case

• Primal'problem:

• Dual%problem (derivation):--
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w – weights on features (d-dim problem)

! – weights on training pts (n-dim problem)

n"training"points,"d"features (x1,"…,"xn)"where"xi is#a#d!dimensional*
vector'



Dual%SVM%– linearly(separable(case

• Dual%problem:%%
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If#we#can#solve#for#
!s"(dual"problem),"
then%we%have%a%
solution(for(w,b
(primal(problem)(



Dual%SVM%– linearly(separable(case

Dual%problem%is%also%QP
Solution(gives(!js
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What%about%b?



Dual%SVM:%Sparsity of#dual#solution
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w
.x
+"
b"
="
0

Only%few%!js can$be$
non!zero%:%where%
constraint)is)active)and)
tight

(w.xj +"b)yj ="1

Support'vectors –
training'points'j'whose'
!js are$non!zero

!j >"0

!j >"0

!j >"0

!j ="0

!j ="0

!j ="0



Dual%SVM%– linearly(separable(case

Dual%problem%is%also%QP
Solution(gives(!js
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Use$support$vectors$with$!k>0#to#
compute(b(since(constraint(is(tight(
(w.xk +"b)yk ="1


