SVM Review

Siddharth Ancha

Slides from Aarti's Lectures

At Pittsburgh G-20 summit ...

Linear classifiers - which line is better?

Pick the one with the largest margin!

Parameterizing the decision boundary

6

Parameterizing the decision boundary

Distance of closest examples from the line/hyperplane

margin = γ = 2a/||w||

Step 1: **w** is perpendicular to lines since for any x_1 , x_2

on line **w**.
$$
(x_1 - x_2) = 0
$$

$$
\begin{array}{c}\n\circ \\
\circ \\
\star \\
\star \\
\star \\
\star \\
\star_2\n\end{array}
$$

$$
margin = \gamma = 2a / ||w||
$$

Step1: w is perpendicular to lines

- Step 2: Take a point x on $w.x + b = -a$ and move to
- point x_+ that is γ away on line $w.x+b = a$
	- $\mathbf{x}_{+} = \mathbf{x}_{-} + \gamma \mathbf{w}/\|\mathbf{w}\|$

$$
\mathbf{w}.\mathbf{x}_{+} = \mathbf{w}.\mathbf{x}_{-} + \gamma \mathbf{w}.\ \mathbf{w}/||\mathbf{w}||
$$

$$
a - b = -a - b + \gamma ||\mathbf{w}||
$$

 $2a = \gamma ||w||$ \mathcal{G}

Support Vector Machines

Support Vectors

Linear hyperplane defined by "support vectors"

Moving other points a little doesn't effect the decision boundary)

only need to store the support vectors to predict labels of new points

For support vectors $(w.x_j + b) y_j = 1$

What if data is still not linearly separable?

Allow "error" in classification

Soft margin approach

$$
\min_{\mathbf{w},b,\{\xi_j\}} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_j
$$
\ns.t.
$$
(\mathbf{w}.\mathbf{x}_j + b) \mathbf{y}_j \ge 1 - \xi_j \quad \forall j
$$
\n
$$
\xi_j \ge 0 \qquad \forall j
$$

- ξ "slack" variables $=$ (>1 if x_i misclassifed) pay linear penalty if mistake
- C tradeoff parameter (chosen by cross-validation)

Still QP \odot

Soft-margin SVM

Soften the constraints:

$$
(\mathbf{w}.\mathbf{x}_j + b) \mathbf{y}_j \ge 1 - \xi_j \quad \forall j
$$

$$
\xi_j \ge 0 \qquad \forall j
$$

Penalty for misclassifying:

 $C \xi_i$

How do we recover hard margin SVM? Set $C = \infty$

Slack variables - Hinge loss

Notice that

$$
\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+
$$

Slack variables - Hinge loss $\xi_i = (1 - (\mathbf{w} \cdot x_i + b)y_i))_+$ **Hinge loss** $0-1$ loss $(\mathbf{w} \cdot x_i + b)y_i$ $\mathbf{1}$ -1 $\boldsymbol{0}$

$$
\begin{array}{c}\n\min_{\mathbf{w},b,\{\xi_j\}} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_j \\
\text{s.t. } (\mathbf{w}.\mathbf{x}_j + b) \quad y_j \ge 1 - \xi_j \quad \forall j \\
\xi_j \ge 0 \qquad \forall j\n\end{array}
$$

Regularized hinge loss

min **w.w** + C $\Sigma (1 - (w.x_j+b)y_j)_+$

SVM vs. Logistic Regression

SVM : Hinge loss

 $\cos(f(x_i), y_i) = (1 - (\mathbf{w} \cdot x_i + b)y_i))_+$

Logistic Regression : Log loss (-ve log conditional likelihood)

 $\cos(f(x_j), y_j) = -\log P(y_j | x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$

SVM\$– linearly(separable(case

n training points $(\mathbf{x}_1, ..., \mathbf{x}_n)$

d features x_i is a d-dimensional vector

• <u>Primal problem</u>: $\begin{array}{cc} \displaystyle{\minimize_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w}} \\ \displaystyle{\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \,\,\forall j}\end{array}$

w – weights on features (d-dim problem)

- Convex quadratic program $-$ quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

 $\frac{0.50+}{0.4}$

Constrained Optimization

$$
\begin{array}{ll}\mathsf{min}_{x} \; x^{\mathsf{2}} \\ \mathsf{s.t.} \quad x \geq b \end{array} \qquad x^* = \max(b, 0)
$$

Constrained+Optimization+– Dual%Problem

Primal problem:

$$
\min_{x} x^2
$$

s.t. $x \ge b$

Moving the constraint to objective function Lagrangian:

$$
L(x, \alpha) = x^2 - \alpha(x - b)
$$

s.t. $\alpha \ge 0$

 α = 0 constraint is inactive α > 0 constraint is active

Dual problem:

$$
\max_{\alpha} d(\alpha) \longrightarrow \min_{x} L(x, \alpha)
$$

s.t. $\alpha \ge 0$

Dual problem: <code>d*</code> = $\,$ <code>max $_{\alpha} \,$ $\,d(\alpha) \,$ =</code> s.t. $\alpha > 0$ s.t. $\alpha > 0$

Notice that

Primal problem: p^* = $\min_x x^2 =$

Why?
$$
L(x, \alpha) = x^2 - \alpha(x - b)
$$

$$
\max_{\alpha \ge 0} L(x, \alpha) = x^2 - \min_{\alpha \ge 0} \alpha(x - b) = \begin{cases} x^2 & \text{if } x \ge b \\ \infty & \text{if } x < b \end{cases}
$$

Dual problem: d^* = $\max_{\alpha} d(\alpha)$ **Primal problem:** $p^* = min_x x^2$ s.t. $\alpha > 0$ s.t. $x > b$

 \triangleright Weak duality: The dual solution d* lower bounds the primal solution p^* i.e. $d^* \leq p^*$

To see this, recall
$$
L(x,\alpha)=x^2-\alpha(x-b)
$$

For every feasible x (i.e. $x \ge b$) and feasible α (i.e. $\alpha \ge 0$), notice that

$$
d(\alpha) = \min_x L(x, \alpha) \le x^2 - \alpha(x-b) \le x^2
$$

Since this holds for all feasible x, in particular it holds for x^* achieving the min of p^* , hence $d(a) \leq p^*$ for all feasible $\alpha \geq 0$.

Dual problem: d^* = $\max_{\alpha} d(\alpha)$ **Primal problem:** $p^* = min_x x^2$ s.t. $x > b$ s.t. $\alpha > 0$

 \triangleright Weak duality: The dual solution d* lower bounds the primal solution p^* i.e. $d^* \leq p^*$

 \triangleright **Strong duality:** $d^* = p^*$ holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)? What does strong duality say about α (the α that achieved optimal value of dual) and *x*⇤ (the *x* that achieves optimal value of primal problem)? dual) and x^* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for ↵⇤ and *x*⇤: Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* : Whenever strong duality holds, the following conditions (known as KIXT conditions) are true for ↵⇤ and *x*⇤:

- 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero. • 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero. \forall 1. \forall $L(w, \alpha)$ = 0 i.e. Gradient of Lagrangian at *x* and α is zero.
- 2. $x^* > b$ i.e. x^* is primal feasible • 2. $x^* \geq b$ i.e. x^* is primal feasible $\frac{2.6}{2.6}$ $\frac{2}{2.6}$ $\frac{1}{2.6}$ \frac
- 3. $\alpha^* > 0$ i.e. α^* is dual feasible • 3. $\alpha^* \geq 0$ i.e. α^* is dual feasible $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ is dual feasible
- 4. $\alpha^*(x^* b) = 0$ (called as complementary slackness) • 4. $\alpha^*(x^* - b) = 0$ (called as complementary slackness) \mathbf{v} **1.** α (α *b*) = 0 (called as complementary slackness)

We use the first one to relate x^* and α^* . We use the last one (complimentary slackness) to argue We use the first one to relate x^* and e^* . We use the last one (complimentary since the instance of the constraint is inactive and a^{*} > 0 if constraint is active and tight. We use the first one to relate x^* and α^* . We use the last one (complimentary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

Solving the dual

$$
\max_{\alpha} \min_{x} x^2 - \alpha(x - b)
$$

s.t. $\alpha \ge 0$

Find the dual: Optimization over x is unconstrained.

$$
\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2} \qquad L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)
$$

$$
= -\frac{\alpha^2}{4} + b\alpha
$$

 Ω

Solve: Now need to maximize L(x^{*},α) over $α ≥ 0$ Solve unconstrained problem to get α' and then take max(α' ,0)

 $L(x,\alpha)$

$$
\frac{\partial}{\partial \alpha} L(x^*, \alpha) = -\frac{\alpha}{2} + b \implies \alpha' = 2b
$$

\n
$$
\Rightarrow \alpha^* = \max(2b, 0) \implies x^* = \frac{\alpha^*}{2} = \max(b, 0)
$$

 α = 0 constraint is inactive, α > 0 constraint is active and tight α

Dual%SVM%– linearly(separable(case

n training points, d features $(x_1, ..., x_n)$ where x_i is a d-dimensional vector'

• Primal problem:

$$
\begin{array}{ll}\text{minimize}_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \ge 1, \ \forall j \end{array}
$$

w – weights on features (d-dim problem)

• Dual problem (derivation):

$$
L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_j \left[\left(\mathbf{w} \cdot \mathbf{x}_j + b\right) y_j - 1 \right]
$$

$$
\alpha_j \ge 0, \ \forall j
$$

! **– weights on training pts (n-dim problem)**

Dual SVM – linearly separable case

• Dual problem:

 $\max_{\alpha} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_j \alpha_j |(\mathbf{w}.\mathbf{x}_j + b) y_j - 1|$ $\alpha_j \geq 0, \ \forall j$

$$
\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_j y_j \mathbf{x}_j
$$

$$
\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_j y_j = 0
$$

If we can solve for α s (dual problem), then we have a solution for w,b (primal problem)

Dual SVM – linearly separable case

maximize α $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$ $\sum_i \alpha_i y_i = 0$
 $\alpha_i \geq 0$

 $\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$
What about b? Dual problem is also QP Solution gives α_i s

Dual SVM: Sparsity of dual solution

$$
\mathbf{w} = \sum_j \alpha_j y_j \mathbf{x}_j
$$

Only few α_j s can be non-zero : where constraint is active and tight

$$
(\mathbf{w}.\mathbf{x}_j + b)\mathbf{y}_j = 1
$$

14 **Support vectors –** training points j whose $\alpha_{\rm j}$ s are non-zero

Dual SVM – linearly separable case

maximize α $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$ $\sum_i \alpha_i y_i = 0$ $\alpha_i > 0$

Solution gives $\alpha_j s$	w
Use support vectors with α_k >0 to compute b since constraint is tight	$b = y$
$(w.x_k + b)y_k = 1$	$y_k = 1$

Dual problem is also OD

$$
\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i
$$

$$
b = y_k - \mathbf{w} \cdot \mathbf{x}_k
$$

for any k where $\alpha_k > 0$