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At Pittsburgh G-20 summit ...




Linear classifiers — which line is
better?




Pick the one with the largest margin!



Parameterizing the decision boundary
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Parameterizing the decision boundary
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Maximizing the margin

wX+b<0 .
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from the line/hyperplane
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Maximizing the margin

w.X+b<0 .
margin =y = 2a/||w]|
= Stepl: wis perpendicular
= tolines

= ™ Step 2: Take a point x_on

w.X +b =-a and move to

=  pointx, thatisyaway on

line w.x+b = a
= - X, = X_+yw/|lw]|

W.X, = W.X_+ YW. W/||w]|

a-b =-a-b + y|w|
2a = y[wl :



Maximizing the margin

w.X+b<0
Distance of closest examples
= from the line/hyperplane
E— margin =y = 2a/||w]|

Smaller margin < larger ||w]||

10



Maximizing the margin

w.X+b<0
Distance of closest examples
= from the line/hyperplane
R — margin =y = 2a/||w]|
- max Yy = 2a/||w]|
w,b
- = s.t. (w.x+b)y;2a Vj

Note: ‘a’is arbitrary (can normalize
equations by a) 11



Support Vector Machines

wX+b<0
min W.w
= w,b
= s.t. (w.x+b) y; 21 Vj

Solve efficiently by quadratic
- programming (QP)
— Quadratic objective, linear
constraints

= — Well-studied solution
algorithms
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Support Vectors

w.Xx+b>0 w.Xx+b<0
Linear hyperplane defined by

“support vectors”
I

Moving other points a little
@ - doesn’t effect the decision
5 - == boundary

L
@ only need to store the
— support vectors to predict
@ labels of new points

+ - - For support vectors
(w.x+b)y;=1
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What if data is still not linearly
separable?

Allow “error” in classification

Soft margin approach

min wW.w + CZE
w,b, {§}

s.t. (w.x+b) y; 2 1-§ V|
20 V]

§ - “slack” variables
= (>1 if x; misclassifed)
pay linear penalty if mistake
C - tradeoff parameter (chosen by
cross-validation)

StillQP © -



Soft-margin SVM

Soften the constraints:

20 V]

Penalty for misclassifying:
C¢

How do we recover hard
margin SVM?
SetC=o0
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Slack variables — Hinge loss

Notice that

=1 —(w-z; +b)y;))+

18



Slack variables — Hinge loss

=1 —(w-z; +b)y;))+

Hinge loss

0-1 loss

-1 0 1 (W-x; +b)y,

Regularized hinge loss

min w.w + C2¢
W,b,{gj} J

s.t. (w.x+b) y; 2 1-§ V|
20 V]

& rlep wW.W + C jZ(l—(w.xj+b)yj)+



SVM vs. Logistic Regression

SVM : Hinge loss
loss(f(zj),y;) = (1 —(w-z; +0)y;))+

Logistic Regression : Log loss ( -ve log conditional likelihood)

Log loss\\_Hinge loss

0-1 loss

-1 0 1 (W-x; +b)y,
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SVM - linearly separable case

n training points (Xq, o) Xp) + S

d features X; is a d-dimensional vector  * y
+ O
+ + 4+
Primal problem: minimize,,, iw.w .. B
(wxj+b)y; > 1, Vj +

w - weights on features (d-dim problem)

Convex quadratic program — quadratic objective, linear
constraints

But expensive to solve if d is very large
Often solved in dual form (n-dim problem)



Constrained Optimization

min, z2
s.t. x>0

MiNn, x

s.t. > —1

r* = max(b,0)

Mmin, x
s.t. 2>1

¥ =0

Constraint inactive

=1
Constraint active
and tight




Constrained Optimization — Dual Problem
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x* =0>

o = 0 constraint is inactive
o > 0 constraint is active

Primal problem:
Ming T2
s.t. >0

Moving the constraint to objective function
Lagrangian:

L(z,a) = 2% — a(z —b)
s.t. >0

Dual problem:

ming L(x, o
maxq d(a)” " ()

s.t. >0



Connection between Primal and Dual

Dual problem: d* = max, d(a) = maXq ming L(x, o)
s.t. >0 s.t. >0

Notice that

Primal problem: p* = ming 2 = min max L(:l?, a)
s.t. x>b r  az0

Why?  L(z,a) = 22 — a(z — b)

max L(z,a) = 2* — min a(z — b) =

a>0 a>0

x> ifx>0b
oo ifx<b



Connection between Primal and Dual

Primal problem: p* = ming z°2 Dual problem: d* = max,, d(a)
s.t. x>0 s.t. >0

» Weak duality: The dual solution d* lower bounds the primal
solution p*i.e. d* £ p*

To see this, recall L(z,a) = 22 — a(z — b)

For every feasible x (i.e. x > b) and feasible a (i.e. a = 0) , notice
that
d(a) = Ming L(x, ) £ x2—a(xb) < x2

Since this holds for all feasible x, in particular it holds for x*
achieving the min of p*, hence d(a) < p* for all feasible a > 0.



Connection between Primal and Dual

Primal problem: p* = min, 2 Dual problem: d*= max, d(o)
s.t. x>0 s.t. >0

» Weak duality: The dual solution d* lower bounds the primal
solution p*i.e. d* £ p*

» Strong duality: d* = p* holds often for many problems of
interest e.g. if the primal is a feasible convex objective with linear
constraints



Connection between Primal and Dual

What does strong duality say about a* (the a that achieved optimal value of
dual) and z* (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for o* and x*:

e 1. YL(z*,a*) =0 i.e. Gradient of Lagrangian at =* and a* is zero.

o 2. x* >bi.e. x* is primal feasible

o 3. o >01i.e. «aF is dual feasible

e 4. a*(x* —b) =0 (called as complementary slackness)

We use the first one to relate * and a*. We use the last one (complimentary

slackness) to argue that o = 0 if constraint is inactive and a* > 0 if constraint

is active and tight. 9



Solving the dual

L(z, )
maxa ming 2 — a(z — b)
s.t. a>0

Solving:

Find the dual: Optimization over x is unconstrained.

2

L . * _ & (3 _ )
8—:2:6—05:O:>$’:_ L(QZ’,O&) 4 @ 2 b
Ox 2 5
Q
Solve: Now need to maximize L(x",a) over a = 0
Solve unconstrained problem to get a’ and then take max(a,0)
0 Q ,
—L(z*,a)=——=+b = a =2b
Ja ( ) 2 .
.
= o = max(2b,0) - =5 = max(b,0)

o = 0 constraint is inactive, a > 0 constraint is active and tight .



Dual SVM - linearly separable case

n training points, d features (X4, ..., X,,) where x: is a d-dimensional
vector
* Primal problem: minimizey, g, %w.w

(wxj+b)y; > 1, Vj
w - weights on features (d-dim problem)

 Dual problem (derivation):

L(w,b, o) = %W.W — > [(W.Xj + b) Y — 1}
Oéj 2 O, \V/j

o - weights on training pts (n-dim problem)
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Dual SVM - linearly separable case

* Dual problem:

MaXq MiNy p L(W, b, o) = %W.W — 2. [(W.Xj -+ b) Yj — 1}

Oéj Z 07 \V/]
oL
— 0 W — Zajijj If we can solve for
W F os (dual problem),
, then we have a
L lution f b
oL _ N oo = 0O solution for w,
ab Z Jyj (prlma| pr0b|em)
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Dual SVM - linearly separable case

.. 1
MaXimiZey ZZ Qa; — 5 Zz,j Q;05YY i X4.X

>0y =0

87 Z O
Dual problem is also QP W= ) yiX;
Solution gives os > i

What about b?




Dual SVM: Sparsity of dual solution

=0 +

o 3 0

T,
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ocj>0

s

W= ) ajyiX;
;

Only few ays can be
non-zero : where
constraint is active and
tight

(w.x; + bly,=1

Support vectors —
training points j whose

oS are non-zero



Dual SVM - linearly separable case

.. 1
MaxXimilIZEy ZZ Qa; — 5 Zz,j Q;05YY i X4.X

>ioy; =0
047; > O

Dual problem is also QP

Solution gives os

Use support vectors with o, >0 to
compute b since constraint is tight
(w.x, +b)y, =1

W= ) oYX,

(2

b=y — W.Xp

for any k£ where oy > 0




