
SVM Review
Siddharth Ancha

Slides from Aarti’s Lectures

At#Pittsburgh#G!20#summit#…

3

Linear'classifiers'– which%line%is%
better?

4

Pick%the%one%with%the%largest%margin!

5

Parameterizing+the+decision+boundary

6

w
.x
+"
b"
="
0

w.x +"b">"0 w.x +"b"<"0

w.x ="!j w(j) x(j)

Parameterizing the$decision$boundary

7

w
.x
+"
b"
="
0

w.x +"b">"0 w.x +"b"<"0

Maximizing)the)margin

8

margin'='! ="2a/ǁwǁ
w
.x
+"
b"
="
0

w.x +"b">"0 w.x +"b"<"0
w
.x +

+"
b"
="
a

w
.x !

+"
b"
="
!a

!

Distance)of)closest)examples)
from%the%line/hyperplane

Step%1:"w"is#perpendicular#
to#lines#since#for#any#x1,"x2
on#line##w.(x1 – x2)"="0

x1

x2

w
.x
+"
b"
="
0

Maximizing)the)margin

9

w
.x
+"
b"
="
0

w.x +"b">"0 w.x +"b"<"0
w
.x +

+"
b"
="
a

w
.x !

+"
b"
="
!a

!

Step1:w"is#perpendicular#
to#lines

Step%2:"Take"a"point"x! on#
w.x +b#=#!a"and"move"to"
point&x+ thatis! awayon
line%w.x+b ="a"

x+ ="x! +"!w/ǁwǁ
w.x+ ="w.x! +"!w."w/ǁwǁ

a!b ="!a!b"+"!ǁwǁ
2a#=#!ǁwǁ

margin'='! ="2a/ǁwǁ

Maximizing)the)margin

10

w
.x
+"
b"
="
0

w.x +"b">"0 w.x +"b"<"0

margin'='! ="2a/ǁwǁ

Distance)of)closest)examples)
from%the%line/hyperplane

w
.x +

+"
b"
="
a

w
.x !

+"
b"
="
!a

! Smaller'margin'! larger&ǁwǁ

Maximizing)the)margin

11

w
.x
+"
b"
="
0

w.x +"b">"0 w.x +"b"<"0

max$$! ="2a/ǁwǁ
w,b

s.t."(w.xj+b)"yj ≥"a !j"

margin'='! ="2a/ǁwǁ

Note: ‘a’isarbitrary$(can$normalize$
equations*by*a)

Distance)of)closest)examples)
from%the%line/hyperplane

w
.x +

+"
b"
="
a

w
.x !

+"
b"
="
!a

!

Support'Vector'Machines

12

w.x +"b">"0 w.x +"b"<"0

min$$w.w
w,b

s.t."(w.xj+b)"yj ≥"1 !j"

Solve&efficiently&by&quadratic&
programming)(QP)
– Quadratic)objective, linear'

constraints
– Well!studied'solution'

algorithms

w
.x
+"
b"
="
0

w
.x +

+"
b"
="
1

w
.x !

+"
b"
="
!1

!

Support'Vectors

13

w.x +"b">"0 w.x +"b"<"0
Linear'hyperplane defined&by&
“support'vectors”

Moving'other'points a"little"
doesn’t(effect(the(decision(
boundary)

only%need%to%store%the%
support'vectors'to'predict'
labels&of&new&points

For$support$vectors
(w.xj+b)"yj ="1

What%if%data%is%still%not%linearly%
separable?

16

min$$w.w +"C"Σξjw,b,{ξj}"

s.t."(w.xj+b)"yj ≥"1!ξj !j
ξj ≥"0 !j

j

Allow%“error”%in%classification

ξj" ! “slack”(variables(
="(>1"if"xj misclassifed)

pay$linear$penaltyifmistake
C""! tradeoff(parameter((chosen(by(

cross!validation)
Still%QP%!

Soft margin approach

Soft!margin'SVM

17

(w.xj+b)"yj ≥"1!ξj !j
ξj ≥"0 !j

Soften'the'constraints:

Penalty(for(misclassifying:

C"ξj

How do we recover hard
margin SVM?

SetC=$∞w
.x
+"
b"
="
1

w
.x
+"
b"
="
!1

18

w
.x
+"
b"
="
1

w
.x
+"
b"
="
!1

Notice'that

Slack&variables&– Hinge&loss

Slack&variables&– Hinge&loss

19

Hinge&loss

0!1"loss

0!1 1

min$$w.w +"C"Σξjw,b,{ξj}"

s.t."(w.xj+b)"yj ≥"1!ξj !j
ξj ≥"0 !j

j

Regularized+hinge+loss

min$$w.w +"C"Σ(1!(w.xj+b)yj)+w,b j

SVM$vs.$Logistic$Regression

21

SVM : Hinge&loss

0!1"loss

0!1 1

Logistic(Regression :"Log$loss$ ("!ve log$conditional$likelihood)

Hinge&lossLog$loss

SVM$– linearly(separable(case

• Convex'quadratic'program'– quadratic)objective,)linear)
constraints

• But$expensive$to$solve$ifdis$very$large
• Often&solved&in&dual&form&(n!dim$problem)

2

w – weights on features (d-dim problem)

n"training"points (x1,"…,"xn)"
d"features xj is#a#d!dimensional*vector*

• Primal'problem:

w
.x
+"
b"
="
0

Constrained+Optimization

3

Constraint)inactive Constraint)active)
and$tight

x⇤ = max(b, 0)

Constrained+Optimization+– Dual%Problem

4

Moving'the'constraint'to'objective'function
Lagrangian:

Dual%problem:

! ="0"constraint"is"inactive
! >"0""constraint"is"active

b"+ve

Primal'problem:

Connection(between(Primal(and(Dual

5

Dual%problem:%d*#=

Primal'problem:'p* =

=

Notice'that

=

Why?

Connection(between(Primal(and(Dual

7

Primal'problem:'p* ="

! Weak%duality:%The$dual$solution$d*$lower$bounds$the$primal$
solution(p*(i.e.(d*(≤((p*

To#see#this,#recall#

For$every$feasiblex(i.e.x≥$b)$and$feasible$α"(i.e.%α"≥"0)","notice""
that

d(α)#=" ≤""x2 – !(x!b)#≤##x2

Since&this&holds&for&all&feasible&x,#in#particular#it#holds#for#x*#####
achieving)the)min)of)p*,)hence))d(a) ≤"p*"for"all"feasible"α"≥"0.

Dual%problem:%d*#=

Connection(between(Primal(and(Dual

8

Primal'problem:'p* ="

! Weak%duality:%The$dual$solution$d*$lower$bounds$the$primal$
solution(p*(i.e.(d*(≤((p*

Dual%problem:%d*#=

! Strong'duality:'d*#=#p*#holds#often#for#many#problems#of#
interest'e.g.'if'the'primal'is'a'feasible'convex'objective'with'linear'
constraints

9

Connection(between(Primal(and(Dual
What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.

10

Solving(the(dual

Find%the%dual: Optimization*over%x%is%unconstrained.

Solve:"Now"needtomaximize$L(x*,α)$over$α$≥0
Solve&unconstrained&problem&to&get&α’ and$then$take$max(α’,0)

! ="0"constraint"is"inactive,"α">"0""constraint"is"active"and"tight

) ↵0 = 2b

Dual%SVM%– linearly(separable(case

• Primal'problem:

• Dual%problem (derivation):--

11

w – weights on features (d-dim problem)

! – weights on training pts (n-dim problem)

n"training"points,"d"features (x1,"…,"xn)"where"xi is#a#d!dimensional*
vector'

Dual%SVM%– linearly(separable(case

• Dual%problem:%%

12

If#we#can#solve#for#
!s"(dual"problem),"
then%we%have%a%
solution(for(w,b
(primal(problem)(

Dual%SVM%– linearly(separable(case

Dual%problem%is%also%QP
Solution(gives(!js

13

What%about%b?

Dual%SVM:%Sparsity of#dual#solution

14

w
.x
+"
b"
="
0

Only%few%!js canbe
non!zero%:%where%
constraint)is)active)and)
tight

(w.xj +"b)yj ="1

Support'vectors –
training'points'j'whose'
!js are$non!zero

!j >"0

!j >"0

!j >"0

!j ="0

!j ="0

!j ="0

Dual%SVM%– linearly(separable(case

Dual%problem%is%also%QP
Solution(gives(!js

15

Use$support$vectors$with$!k>0#to#
compute(b(since(constraint(is(tight(
(w.xk +"b)yk ="1

