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Inverse

https://www.mathsisfun.com/algebra/matrix-inverse.html



https://www.mathsisfun.com/algebra/matrix-inverse.html

Invertibility

In linear algebra, an n-by-n square matrix A is
called invertible (also nonsingular or nondegenerate) if there exists an n-by-n square

matrix B such that
AB=BA=1,

where |, denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If

this is the case, then the matrix B is uniquely determined by A and is called the inverse of A, denoted
by AL



https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Identity_matrix
https://en.wikipedia.org/wiki/Matrix_multiplication

Eigenvalues and Eigen Vectors

In linear algebra, an eigenvector (/ argan vektar/) or characteristic vector of a linear transformation is a
nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it.

Now consider the linear transformation of n-dimensional vectors defined by an n by n matrix A,
Av =w

If it occurs that v and w are scalar multiples, that is if

Av =w = Av

then v is an eigenvector of the linear transformation A and the scale factor A is the eigenvalue corresponding to
that eigenvector. Equation (1) is the eigenvalue equation for the matrix A.



https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

Eigenvalues and Eigen Vectors

Av =w = Av
Can be stated equivalently as

(A—ADv=0

where I'is the n by n identity matrix and O is the zero vector.



https://en.wikipedia.org/wiki/Identity_matrix

SVD

https://en.wikipedia.org/wiki/Eigendecomposition of a matrix

https://en.wikipedia.org/wiki/Singular value decomposition



https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
https://en.wikipedia.org/wiki/Singular_value_decomposition

Positive Definite.

A linear transformation T: R — R? is called positive semi-definite if

vveRY (Tv) - v=0

Note: A symmetric matrix is positive semi-definite iff. all eigen values=> 0




What 1s Calc?

exists
h x—a X )

We say f is differentiable at a if illirr(l)

Notation: f'(a) = 1imw

x—a X—a




Derivative = 0

f'(x) = 0 when f attains local min/max £(a) = }llir%f (a+h}z—fl(a) >0

f'a+h)—f"(a)
38:|h| <6 = >0
Pf for min. Assume not. WLOG f'(a) > 0 IRl h

_ h>0=f'(a+h)>f'(a) =0
f’(a):}linéw>o f f
h<0=f'(a+h)<f'(a)=0

35 > 0:|h] < 6 = [LVTD _ p1(g)] < f(@)
w >0= Suppose f'(a) is not local min, 3h": f'(a + h") < f(a)

Ifh <0:f(a+h)<f(a) WLOG we consider h' > 0, use MVT

Contradiction Ik € (0,h): f'(a+h) = f(a+hh2+f(a)




Extension to MultiDim

We say f: R? — R s differentiable at a, if 3a a linear transformation T: R —» R

I If(a+h)—f(a) —Th| _
im =0
h—0 |h|

T is called the derivative of f.

Notation:
T alone is called the derivative of f at a denoted by Df, (Af)

Note: If f differentiable, derivative is unique




Directional Dervatives:

Def: The directional derivative of f at a in a direction v is defined to be

D.f(@ =4 (fla+ )|

af(a)

If v = e; (i*" basis vector). D,.f (a) is called the i*" partial derivative of f at a. Notation: d;f(a) or
i 0xi

f(ai+h,az,a3,..)—f(a)
h

Note: d,f(a) = }lirr(l)

Prop: If f is differentiable at a then all directional derivatives (at a) exist (Need not be continuous).

Moreover D,f(a) = Df,(v)




Attaching the Proof for Completeness

Prop: If f is differentiable at a then all directional derivatives (at a) exist (Need not be
continuous).

Moreover D,f(a) = Df,(v)

Pf: WTS lim ! (“”’?_f @ = (v

Know lim |f(a+h)—f(a)-(Dfa)h|
h—0 |h|

,sowe pluginh = tv

1m

lim |f(a+tv)—f(a)-t(Dfa)v| _ 1 lim |f(at+tv)—f(a)-t(Dfa)v| _ 1 li ‘f(a+tv)—f(a) _ Dfa(v)‘ 0
t—0 [t]|v] lv| t—0 |t] lv| t—0 t




Jacobian

If £: R > Ris differentiable at a

Df,: R — Ris a linear transformation

Dfa — (Dfa(el)I "'JDfa(ed))
y Differentiable ata = Df, = (0,f(a), ...,05f (a))

We call the matrix of partials the Jacobian. 1)7 ¢




Chain Rule

g:R% —» R™ Differentiable at a € R%

f:R™ — R™ Differentiable at g(a) € R™

Theorem: f o g differentiable at a and D(f ° g), = (Df) 4(a)Pga

Non-math version: f some function of y, y some function of x

of - Of g
ax, = ai(f°.9) = Za_g,a_x,
Jj=1




Higher Order Partials

f:RY{> R

0;f:R% > R

0;(0;f) is the second order derivative of f




Taylor’'s Theorem

Theorem (Talor's): Suppose f is a C™*(R%) function, then for any a,h € R%, 3R,: R* - R s.t.

fla+h) = f(@)+X;0:f @h; +5 % 0:0;f @hgh; + Ry (h)

Where lim
h

-0 |h|"




Introduce our Guests

Gradient vy = (Df)T = (9,1 (a), ...,adf(a))T

0101f ... 0104f
Hessian Hf, = : " :

0401f .. 0404f




Local Min/Max in R4

Let f:RY - R

U € RY compact. We say f attain a localminata € U if 3e > 0,Vx € B(a, €), f(x) = f(a)

suppose f differentiable and attains a local min at a ,then Vf(a) = 0

Pf.If f hasalocal minata +> Vv € R%, v # 0

consider g(t) = f(a + tv) hasalocalminatt =0

g'(t) =3, 0;f(a+tv) %(ai + tv;) = vXVf(a + tv)




Hessian

If fis C2(U) and f allows a local min at a then Vf(a) = 0 and Hf, is positive semi-definite

Pf.
g’(0)=0

144 d
g" () = — (X vi0if (a + tv)) — X; jv;v;0;0;f (a + tv)
g"'(0)=0 iffZi,,- v;v;0;0;f(a) =0, Vv

= Hf, positive semi-definite




Thank You

SURPRISE COMING AFTER THIS SLIDE




Manifolds

Def: M € R is called an m-dim manifold if Vx € M,3U < R%

s.t.
1.xeU
2.3¢:U - B(0,1) € R4

o Such that ¢ is a coordinate change transformation (C?, bijective, D¢ invertible) & (M N U) =
B(—, D Nn{x €R¥Yx, =x3 =+ =x, =0}

Theorem

1. A 1 dim manifold in R¢ is called a curve
2. An "orientable" 2 dim manifold is called a surface




Tangent Spaces

Tangent Plane
f:R* > R
S ={x € R3|x3 = f(x{,x3)} (2d manifold, a surface)

X1 — 4
x3 = f(ag,az) + Df(ay,a, (xz — Clz)

Tangent space = Tangent plane shifted to pass through the
origin




Tangent Spaces

Def (Tangent Space):
Let M € R? be a m-dim manifold ] ‘-M

Let a € M, the tangent space of M at a is defined as follows.
Ellé S a open, & ¢: U - B(0,1) € R¢ C? diffeomorphic (CY, bijective, inverse C1) s.t. ¢ (M N U) = B(0,1) n (R™x0), 0 €
R -n

Lety = ¢~ (WLOG %(0) = a)
Define TM,, = Tangent space of M ata = Dip(R™x0)

Tangent space of S = {x € R3|x3 = f(x;,x,)} at the point a = (al, ay, f (a4, az)) is defined to
be

fr e ®xs = v/ (@. (i)} = & € Rolxs = 01 f (@ + 0o f (@)

Note that the tangent space is a subspace of R3

1 0
Basis:( 0 ),( 1 )
01f(a)/ \0f(a)




Lagrange Multipliers (Constrained Optimization)

Say f:R3 > R, (want to minimize/maximize f), g: R> - R a constraint.

Goal: maximize/minimize f on the manifold M = {g = ¢} (usually written as {g = 0} for simplicity)

https://en.wikipedia.org/wiki/Lagrange multiplier



https://en.wikipedia.org/wiki/Lagrange_multiplier

Lagrange Multipliers

Theorem. If f attains a constrained mim/max subject to the constraint g = ¢, then at all points
a at which the constrained local min/max is attained, we have:

A, - A Vf(a) = X;4;Vgi(a) (m+ n+ n variables, m + n equations)

g(a) = c (nequations, m + n variables)

(m + 2n variables and m + 2n equations in total)




Proof

Lemma 1: If f attains a constrained max/minata € M, then Vf L TM, (i.e. (Vf) -v = 0)

Lemma 2: Let v € R% be any vector, v L TM,, © 34, ..., 1:v = X;4;Vgi(a) (v €
span(Vg4, -..,Vgn))

v is called a normal vector

Note that lemma 1+ lemma 2= if @ attains a local min/max at a on M then 1. (Assume g €
Cl,vx: rank(Dg,) = n)

Vf —Y¥4;Vg;j(a) =0,2.g(a) =c

Pf. of Lemma 1.

Say f attains a constrained local min/max at a € M. Use implicit function theorem and write M locally as the graph of some
C* function.

Case 1. Assume that M = {(x, h(x))|x € U}, where
U < R™ open
h:R™ - R™ CY,
. . _ I _ € €m . . .
In this case we know: TM, = Im (Dh) = span{(alh(b)) , ""(6mh(b))}' where I the mxm identity, Dh nxXm matrix

Let a = h(b). Note that the function x — f(x) has a local max/minata & y - f(y,h(}?) has an unconstrained min/max

ath.Vvi€ {1, ""M}'aiy,- (f(y,h(y))) ‘y:b =0 Let F(y) = f(v,h(¥)),DF, = Df, Dhy) = 0. < Vf(a) orthogonal to

1 )
each column of [Dhb]' the basis of TM,,

Case 2. Just permute coordinate
Pf of Lemma 2

Know TM, = ker(Dg,) © Vv € TM,,(Dg,)v =0 & Vg;(a) -v=0

LetV = {v|v L TM,}, dim(v) = d — dim(TM,,), and Vg; are linearly independent in V, V = span{Vg;}




