Linear Algebra & Calc

 $_{ac}$)

YUE WU

What is a Matrix?

Product

Inverse

Invertibility

Positive Semi-definite Matrices

Inverse

https://www.mathsisfun.com/algebra/matrix-inverse.html

Invertibility

In linear algebra, an *n*-by-*n* square matrix **A** is called *invertible* (also *nonsingular* or *nondegenerate*) if there exists matrix **B** such that

 $AB = BA = I_n$

where **I**_n denotes the *n*-by-*n* identity matrix and the multiplication use this is the case, then the matrix **B** is uniquely determined by **A** and is **c** by **A**−1.

Eigenvalues and Eigen Vectors

In linear algebra, an eigenv[ec](https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors)tor (/ argan vaktar/) or characteristic vector of nonzero vector that changes at most by a scalar factor when that linear tran

Now consider the linear transformation of n-dimensional vectors defined by

 $Av = w$

If it occurs that v and w are scalar multiples, that is if

 $Av = w = \lambda v$

then *v* is an *eigenvector* of the linear transformation *A* and the scale factor *λ* that eigenvector. Equation (**1**) is the **eigenvalue equation** for the matrix *A*.

Eigenvalues and Eigen Vectors

 $Av = w = \lambda v$

Can be stated equivalently as

 $(A - \lambda I)v = 0$

where *I* is the *n* by *n* identity matrix and 0 is the zero vector.

SVD

https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

https://en.wikipedia.org/wiki/Singular_value_decomposition

Positive Definite.

A linear transformation $T: \mathbb{R}^d \to \mathbb{R}^d$ is called positive semi-definite if

 $\forall v \in \mathbb{R}^d$, $(Tv) \cdot v \ge 0$

Note: A symmetric matrix is positive semi-definite iff. all eigen values ≥ 0

What is Calc?

We say f is differentiable at a if lim $\overline{h\rightarrow 0}$ $\frac{f(a+h)-f(a)}{h}$ exists $(\lim_{x\to a}$ $f(x)-f(a)$ $\frac{a}{x-a}$ exists) Notation: $f'(a) = \lim$ $x \rightarrow a$ $f(x)-f(a)$ $x-a$

$$
Derivative = 0
$$

 $f'(x) = 0$ when f attains local min/max

Pf for min. Assume not. WLOG $f'(a) > 0$

$$
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} > 0
$$

\n
$$
\exists \delta > 0: |h| < \delta \Rightarrow \left| \frac{f(a+h) - f(a)}{h} - f'(a) \right| < f'(a)
$$

\n
$$
\frac{f(a+h) - f(a)}{h} > 0 \Rightarrow
$$

\nIf $h < 0: f(a+h) < f(a)$
\nContraction

 $f''(a) = \lim_{h \to 0}$ $f'(a+h)-f'(a)$ $\frac{f^{(n)}-f^{(n)}(u)}{h} > 0$ $\exists \delta: |h| < \delta \Rightarrow \frac{f'(a+h)-f'(a)}{h} > 0$ $h > 0 \Rightarrow f'(a + h) > f'(a) = 0$ $h < 0 \Rightarrow f'(a+h) < f'(a) = 0$

Suppose $f'(a)$ is not local min, $\exists h': f'(a + h') < f(a)$ WLOG we consider $h' > 0$, use MVT $\exists k \in (0, h') : f'(a + h) = \frac{f(a + h') + f(a)}{h'}$

Extension to MultiDim

We say $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable at a , if $\exists a$ a linear transformation $T: \mathbb{R}^d \to \mathbb{R}$ lim $h\rightarrow 0$ $| f(a + h) - f(a) - Th |$ |ℎ| $= 0$

T is called the derivative of f .

Notation:

T alone is called the derivative of f at a denoted by Df_a (Δf)

Note: If f differentiable, derivative is unique

Directional Derivatives:

Def: The directional derivative of f at a in a direction v is defined to be

 \hbar

 $D_{v} f(a) = \frac{d}{dt} (f(a + tv)) \Big|_{t=0}$

If $v=e_i$ (ith basis vector). $D_{e_i}f(a)$ is called the ith partial derivative of f at a. Notation: $\partial_i f(a)$ or $\frac{\partial f(a)}{\partial x_i}$ ∂x_i Note: $\partial_1 f(a) = \lim_{h \to 0}$ $f(a_1+h, a_2, a_3,...)-f(a)$

Prop: If f is differentiable at a then all directional derivatives (at a) exist (Need not be continuous).

Moreover $D_{\nu} f(a) = D f_{a}(v)$

Attaching the Proof for Completeness

Prop: If f is differentiable at a then all directional derivatives (at a) exist (Need not be continuous).

Moreover $D_v f(a) = D f_a(v)$

Pf: WTS
$$
\lim_{t\to 0} \frac{f(a+tv)-f(a)}{t} = (Df_a)v
$$

\nKnow $\lim_{h\to 0} \frac{|f(a+h)-f(a)-(Df_a)h|}{|h|}$, so we plug in $h = tv$
\n $\lim_{t\to 0} \frac{|f(a+tv)-f(a)-t(Df_a)v|}{|t||v|} = \frac{1}{|v|} \lim_{t\to 0} \frac{|f(a+tv)-f(a)-t(Df_a)v|}{|t|} = \frac{1}{|v|} \lim_{t\to 0} \left| \frac{f(a+tv)-f(a)}{t} - Df_a(v) \right| = 0$

Jacobian

If $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable at a

 $Df_a: \mathbb{R}^d \to \mathbb{R}$ is a linear transformation

 $Df_a = (Df_a(e_1), ..., Df_a(e_d))$

y Differentiable at $a \Rightarrow Df_a = (\partial_1 f(a), ..., \partial_d f(a))$

We call the matrix of partials the Jacobian.

$$
Df_{a} = \begin{bmatrix} -2f_{1}(a) & 2zf_{1}(a) & ... & 2nf_{1}(a) \\ \vdots & \ddots & \vdots & \vdots \\ 2f_{n}(a) & 2zf_{n}(a) & ... & 2nf_{n}(a) \end{bmatrix}
$$

Chain Rule

 $g: \mathbb{R}^d \to \mathbb{R}^m$ Differentiable at $a \in \mathbb{R}^d$.

 $f: \mathbb{R}^m \to \mathbb{R}^n$ Differentiable at $g(a) \in \mathbb{R}^m$

Theorem: $f \circ g$ differentiable at a and $D(f \circ g)_a = (Df)_{g(a)}Dg_a$

Non-math version: f some function of y , y some function of x

$$
\frac{\partial f}{\partial x_i} = \partial_i (f \circ g) = \sum_{j=1}^m \frac{\partial f}{\partial g_j} \frac{\partial g}{\partial x_i}
$$

Higher Order Partials

 $f: \mathbb{R}^d \to \mathbb{R}$

 $\partial_i f: \mathbb{R}^d \to \mathbb{R}$

 $\partial_i(\partial_i f)$ is the second order derivative of f

Taylor's Theorem

Theorem (Talor's): Suppose f is a $C^n(\mathbb{R}^d)$ function, then for any $a,h\in\mathbb{R}^d$, $\exists R_n\colon\mathbb{R}^d\to\mathbb{R}$ s.t. $f(a+h) = f(a) + \sum_i \partial_i f(a) h_i + \frac{1}{2} \sum_{i,j} \partial_i \partial_j f(a) h_i h_j + R_n(h)$

Where
$$
\lim_{h \to 0} \frac{R_n(h)}{|h|^n} = 0
$$

Introduce our Guests

Gradient $\nabla f = (Df)^T = \big(\partial_1 f(a), \ldots, \partial_d f(a)\big)^T$ Hessian $Hf_a =$ $\partial_1 \partial_1 f$... $\partial_1 \partial_d f$ ⋮ ⋱ ⋮ $\partial_d \partial_1 f$... $\partial_d \partial_d f$

Local Min/Max in \mathbb{R}^d

Let $f: \mathbb{R}^d \to \mathbb{R}$

 $U \subseteq \mathbb{R}^d$ compact. We say f attain a local min at $a \in U$ if $\exists \epsilon > 0$, $\forall x \in B(a, \epsilon)$, $f(x) \ge f(a)$ suppose f differentiable and attains a local min at a , then $\nabla f(a) = 0$

Pf. If f has a local min at $a \rightarrow \forall v \in \mathbb{R}^d$, $v \neq 0$

consider $g(t) = f(a + tv)$ has a local min at $t = 0$

$$
g'(t) = \sum_{i=1}^{d} \partial_i f(a + tv) \frac{d}{dt} (a_i + tv_i) = v \times \nabla f(a + tv)
$$

Hessian

If f is $C^2(U)$ and f allows a local min at α then $\nabla f(\alpha) = 0$ and Hf_α is positive semi-definite

Pf.

 $g''(0) \ge 0$

$$
g''(t) = \frac{d}{dt} \left(\sum_i v_i \partial_i f(a + tv) \right) - \sum_{i,j} v_i v_j \partial_i \partial_j f(a + tv)
$$

 $g''(0) \geq 0$ iff $\sum_{i,j} v_i v_j \partial_i \partial_j f(a) \geq 0$, $\forall v$

 $\Rightarrow Hf_a$ positive semi-definite

Thank You

SURPRISE COMING AFTER THIS SLIDE

Manifolds

Def: $M \subseteq \mathbb{R}^d$ is called an m -dim manifold if $\forall x \in M$, $\exists U \subseteq \mathbb{R}^d$.

s.t.

 $1, x \in U$

2. $\exists \varphi: U \to B(0,1) \subseteq \mathbb{R}^d$

∘ Such that φ is a coordinate change transformation (C¹, bijective, D φ invertible) & φ (M ∩ U) = $B(-, 1) \cap \{x \in \mathbb{R}^d | x_2 = x_3 = \dots = x_m = 0\}$

Theorem

- 1. A 1 dim manifold in \mathbb{R}^d is called a curve
- 2. An "orientable" 2 dim manifold is called a surface

Tangent Spaces

Tangent Plane

 $f: \mathbb{R}^2 \to \mathbb{R}$

 $S = \{x \in \mathbb{R}^3 | x_3 = f(x_1, x_2)\}$ (2d manifold, a surface)

$$
x_3 = f(a_1, a_2) + D f_{(a_1, a_2)} \binom{x_1 - a_1}{x_2 - a_2}
$$

Tangent space $=$ Tangent plane shifted to pass through the origin

Def (Tangent Space):

Let $M \subseteq \mathbb{R}^d$ be a m-dim manifold

Let $a \in M$, the tangent space of M at a is defined as follows.

- ∘ $\exists U \ni a$ open, & $\phi: U \to B(0,1) \subseteq \mathbb{R}^d$ C^1 diffeomorphic (C^1 , bijective, inverse C^1) s.t. $\phi(M \cap U) = B(0,1) \cap (\mathbb{R}^m \times \mathbf{0}), \mathbf{0} \in \mathbb{R}^d$
- Let $\psi = \phi^{-1}$ (WLOG $\psi(0) = a$)
- **•** Define TM_a = Tangent space of M at $a = D\psi(\mathbb{R}^m \times \mathbf{0})$

Tangent space of $S = \{x \in \mathbb{R}^3 | x_3 = f(x_1, x_2)\}$ at the point $a = (a_1, a_2, f(a_1, a_2))$ is defined to be

$$
\left\{x \in \mathbb{R}^3 \Big| x_3 = \nabla f(a).\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\} = \left\{x \in \mathbb{R}^3 \Big| x_3 = \partial_1 f(a)x_1 + \partial_2 f(a)x_2 \right\}
$$

Note that the tangent space is a subspace of \mathbb{R}^3

Basis: 1 0 $\partial_1 f(a)$, 0 1 $\partial_2 f(a)$ T_XM

Lagrange Multipliers (Constrained

Say $f: \mathbb{R}^3 \to \mathbb{R}$, (want to minimize/maximize f), $g: \mathbb{R}^3 \to \mathbb{R}$ a constraint. Goal: maximize/minimize f on the manifold $M = \{g = c\}$ (usually)

https://en.wikipedia.org/wiki/Lagrange_multiplier

Lagrange Multipliers

Theorem. If f attains a constrained mim/max subject to the constraint $g = c$, then at all points a at which the constrained local min/max is attained, we have:

 $\exists \lambda_1, ..., \lambda_n: \nabla f(a) = \sum_i \lambda_i \nabla g_i(a)$ $(m + n + n$ variables, $m + n$ equations)

 $g(a) = c$ (*n* equations, $m + n$ variables)

 $(m + 2n)$ variables and $m + 2n$ equations in total)

Proof

