

What is a Matrix?

Product

Inverse

Invertibility

Positive Semi-definite Matrices

Inverse

https://www.mathsisfun.com/algebra/matrix-inverse.html

Invertibility

In <u>linear algebra</u>, an *n*-by-*n* <u>square matrix</u> **A** is called **invertible** (also **nonsingular** or **nondegenerate**) if there exists an *n*-by-*n* square matrix **B** such that

$$AB = BA = I_n$$

where I_n denotes the *n*-by-*n* <u>identity matrix</u> and the multiplication used is ordinary <u>matrix multiplication</u>. If this is the case, then the matrix **B** is uniquely determined by **A** and is called the *inverse* of **A**, denoted by A^{-1} .

Eigenvalues and Eigen Vectors

In <u>linear algebra</u>, an **eigenvector** (<u>/ˈaɪgənˌvɛktər/</u>) or **characteristic vector** of a <u>linear transformation</u> is a nonzero <u>vector</u> that changes at most by a <u>scalar</u> factor when that linear transformation is applied to it.

Now consider the linear transformation of n-dimensional vectors defined by an n by n matrix A,

$$Av = w$$

If it occurs that v and w are scalar multiples, that is if

$$Av = w = \lambda v$$

then v is an **eigenvector** of the linear transformation A and the scale factor λ is the **eigenvalue** corresponding to that eigenvector. Equation (1) is the **eigenvalue equation** for the matrix A.

Eigenvalues and Eigen Vectors

$$Av = w = \lambda v$$

Can be stated equivalently as

$$(A - \lambda I)v = 0$$

where I is the n by n identity matrix and 0 is the zero vector.

SVD

https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

https://en.wikipedia.org/wiki/Singular_value_decomposition

Positive Definite.

A linear transformation $T: \mathbb{R}^d \to \mathbb{R}^d$ is called positive semi-definite if

$$\forall v \in \mathbb{R}^d$$
, $(Tv) \cdot v \ge 0$

Note: A symmetric matrix is positive semi-definite iff. all eigen values ≥ 0

What is Calc?

We say f is differentiable at a if $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ exists ($\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ exists)

Notation:
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Derivative = 0

f'(x) = 0 when f attains local min/max

Pf for min. Assume not. WLOG f'(a) > 0

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} > 0$$

$$\exists \delta > 0: |h| < \delta \Rightarrow \left| \frac{f(a+h) - f(a)}{h} - f'(a) \right| < f'(a)$$

$$\frac{f(a+h)-f(a)}{h} > 0 \Rightarrow$$

If
$$h < 0$$
: $f(a + h) < f(a)$

Contradiction

$$f''(a) = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{h} > 0$$

$$\exists \delta: |h| < \delta \Rightarrow \frac{f'(a+h)-f'(a)}{h} > 0$$

$$h > 0 \Rightarrow f'(a+h) > f'(a) = 0$$

$$h < 0 \Rightarrow f'(a+h) < f'(a) = 0$$

Suppose f'(a) is not local min, $\exists h' : f'(a + h') < f(a)$

WLOG we consider h' > 0, use MVT

$$\exists k \in (0, h'): f'(a+h) = \frac{f(a+h')+f(a)}{h'}$$

Extension to MultiDim

We say $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable at a, if $\exists a$ a linear transformation $T: \mathbb{R}^d \to \mathbb{R}$

$$\lim_{h \to 0} \frac{|f(a+h) - f(a) - Th|}{|h|} = 0$$

T is called the derivative of f.

Notation:

T alone is called the derivative of f at a denoted by Df_a (Δf)

Note: If f differentiable, derivative is unique

Directional Derivatives:

Def: The directional derivative of f at a in a direction v is defined to be

$$D_{v}f(a) = \frac{d}{dt} (f(a+tv)) \Big|_{t=0}$$

If $v = e_i$ (i^{th} basis vector). $D_{e_i}f(a)$ is called the i^{th} partial derivative of f at a. Notation: $\partial_i f(a)$ or $\frac{\partial f(a)}{\partial x_i}$

Note:
$$\partial_1 f(a) = \lim_{h \to 0} \frac{f(a_1 + h, a_2, a_3, \dots) - f(a)}{h}$$

Prop: If f is differentiable at a then all directional derivatives (at a) exist (Need not be continuous).

Moreover
$$D_v f(a) = D f_a(v)$$

Attaching the Proof for Completeness

Prop: If f is differentiable at a then all directional derivatives (at a) exist (Need not be continuous).

Moreover $D_v f(a) = D f_a(v)$

Pf: WTS
$$\lim_{t\to 0} \frac{f(a+tv)-f(a)}{t} = (Df_a)v$$

Know
$$\lim_{h\to 0} \frac{|f(a+h)-f(a)-(Df_a)h|}{|h|}$$
, so we plug in $h=tv$

$$\lim_{t \to 0} \frac{|f(a+tv) - f(a) - t(Df_a)v|}{|t||v|} = \frac{1}{|v|} \lim_{t \to 0} \frac{|f(a+tv) - f(a) - t(Df_a)v|}{|t|} = \frac{1}{|v|} \lim_{t \to 0} \left| \frac{f(a+tv) - f(a)}{t} - Df_a(v) \right| = 0$$

Jacobian

If $f: \mathbb{R}^d \to \mathbb{R}$ is differentiable at a

 $Df_a: \mathbb{R}^d \to \mathbb{R}$ is a linear transformation

$$Df_a = (Df_a(e_1), \dots, Df_a(e_d))$$

y Differentiable at $a \Rightarrow Df_a = (\partial_1 f(a), ..., \partial_d f(a))$

We call the matrix of partials the Jacobian.

$$Df_{\alpha} = \begin{bmatrix} -\partial_{i}f_{i}(\alpha) & \partial_{2}f_{i}(\alpha) & \dots & \partial_{n}f_{i}(\alpha) \end{bmatrix}$$

$$= \begin{bmatrix} -\partial_{i}f_{n}(\alpha) & \partial_{2}f_{n}(\alpha) & \dots & \partial_{n}f_{n}(\alpha) \end{bmatrix}$$

Chain Rule

 $g: \mathbb{R}^d \to \mathbb{R}^m$ Differentiable at $a \in \mathbb{R}^d$

 $f: \mathbb{R}^m \to \mathbb{R}^n$ Differentiable at $g(a) \in \mathbb{R}^m$

Theorem: $f \circ g$ differentiable at a and $D(f \circ g)_a = (Df)_{g(a)}Dg_a$

Non-math version: f some function of y, y some function of x

$$\frac{\partial f}{\partial x_i} = \partial_i (f \circ g) = \sum_{j=1}^m \frac{\partial f}{\partial g_j} \frac{\partial g}{\partial x_i}$$

Higher Order Partials

 $f: \mathbb{R}^d \to \mathbb{R}$

 $\partial_i f : \mathbb{R}^d \to \mathbb{R}$

 $\partial_i(\partial_i f)$ is the second order derivative of f

Taylor's Theorem

Theorem (Talor's): Suppose f is a $C^n(\mathbb{R}^d)$ function, then for any $a, h \in \mathbb{R}^d$, $\exists R_n : \mathbb{R}^d \to \mathbb{R}$ s.t.

$$f(a+h) = f(a) + \sum_{i} \partial_{i} f(a) h_{i} + \frac{1}{2} \sum_{i,j} \partial_{i} \partial_{j} f(a) h_{i} h_{j} + R_{n}(h)$$

Where
$$\lim_{h\to 0} \frac{R_n(h)}{|h|^n} = 0$$

Introduce our Guests

Gradient
$$\nabla f = (Df)^T = (\partial_1 f(a), \dots, \partial_d f(a))^T$$

$$\operatorname{Hessian} Hf_a = \begin{bmatrix} \partial_1 \partial_1 f & \dots & \partial_1 \partial_d f \\ \vdots & \ddots & \vdots \\ \partial_d \partial_1 f & \dots & \partial_d \partial_d f \end{bmatrix}$$

Local Min/Max in \mathbb{R}^d

Let $f: \mathbb{R}^d \to \mathbb{R}$

 $U \subseteq \mathbb{R}^d$ compact. We say f attain a local min at $a \in U$ if $\exists \epsilon > 0, \forall x \in B(a, \epsilon), f(x) \geq f(a)$ suppose f differentiable and attains a local min at a ,then $\nabla f(a) = 0$

Pf. If f has a local min at $a +> \forall v \in \mathbb{R}^d$, $v \neq 0$

consider g(t) = f(a + tv) has a local min at t = 0

$$g'(t) = \sum_{i=1}^{d} \partial_i f(a+tv) \ \frac{d}{dt}(a_i + tv_i) = v \times \nabla f(a+tv)$$

Hessian

If f is $C^2(U)$ and f allows a local min at a then $\nabla f(a) = 0$ and Hf_a is positive semi-definite

Pf.

$$g''(0) \ge 0$$

$$g''(t) = \frac{d}{dt} \left(\sum_{i} v_i \partial_i f(a + tv) \right) - \sum_{i,j} v_i v_j \partial_i \partial_j f(a + tv)$$

$$g''(0) \ge 0$$
 iff $\sum_{i,j} v_i v_j \partial_i \partial_j f(a) \ge 0$, $\forall v$

 $\Rightarrow Hf_a$ positive semi-definite

Thank You

SURPRISE COMING AFTER THIS SLIDE

Manifolds

Def: $M \subseteq \mathbb{R}^d$ is called an m-dim manifold if $\forall x \in M, \exists U \subseteq \mathbb{R}^d$

s.t.

- $1. x \in U$
- $2. \exists \varphi : U \rightarrow B(0,1) \subseteq \mathbb{R}^d$
 - Such that φ is a coordinate change transformation (C^1 , bijective, $D\varphi$ invertible) & $\varphi(M \cap U) = B(-,1) \cap \{x \in \mathbb{R}^d | x_2 = x_3 = \dots = x_m = 0\}$

- 1. A 1 dim manifold in \mathbb{R}^d is called a curve
- 2. An "orientable" 2 dim manifold is called a surface

Tangent Spaces

Tangent Plane

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$S = \{x \in \mathbb{R}^3 | x_3 = f(x_1, x_2)\}$$
 (2d manifold, a surface)

$$x_3 = f(a_1, a_2) + Df_{(a_1, a_2)} \begin{pmatrix} x_1 - a_1 \\ x_2 - a_2 \end{pmatrix}$$

Tangent space = Tangent plane shifted to pass through the origin

Tangent Spaces

Def (Tangent Space):

Let $M \subseteq \mathbb{R}^d$ be a m-dim manifold

Let $a \in M$, the tangent space of M at a is defined as follows.

- $\exists U \ni a \text{ open, } \& \ \phi \colon U \to B(0,1) \subseteq \mathbb{R}^d \ \ \mathcal{C}^1 \text{ diffeomorphic } (\mathcal{C}^1, \text{ bijective, inverse } \mathcal{C}^1) \text{ s.t. } \phi(M \cap U) = B(0,1) \cap (\mathbb{R}^m \times \mathbf{0}), \ \mathbf{0} \in \mathbb{R}^d \cap \mathbb{R}^m \times \mathbf{0}$
- Let $\psi = \phi^{-1}$ (WLOG $\psi(0) = a$)
- Define $TM_a=$ Tangent space of M at $a=D\psi(\mathbb{R}^m \times \mathbf{0})$

Tangent space of $S = \{x \in \mathbb{R}^3 | x_3 = f(x_1, x_2)\}$ at the point $a = (a_1, a_2, f(a_1, a_2))$ is defined to be

$$\left\{x\in\mathbb{R}^3\left|x_3=\nabla f(a).\binom{x_1}{x_2}\right\}=\left\{x\in\mathbb{R}^3\left|x_3=\partial_1f(a)x_1+\partial_2f(a)x_2\right\}\right.$$

Note that the tangent space is a subspace of $\ensuremath{\mathbb{R}}^3$

Basis:
$$\begin{pmatrix} 1 \\ 0 \\ \partial_1 f(a) \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ \partial_2 f(a) \end{pmatrix}$

Lagrange Multipliers (Constrained Optimization)

Say $f: \mathbb{R}^3 \to \mathbb{R}$, (want to minimize/maximize f), $g: \mathbb{R}^3 \to \mathbb{R}$ a constraint.

Goal: maximize/minimize f on the manifold $M = \{g = c\}$ (usually written as $\{g = 0\}$ for simplicity)

https://en.wikipedia.org/wiki/Lagrange multiplier

Lagrange Multipliers

Theorem. If f attains a constrained mim/max subject to the constraint g = c, then at all points a at which the constrained local min/max is attained, we have:

$$\exists \lambda_1, \dots, \lambda_n : \nabla f(a) = \sum_i \lambda_i \nabla g_i(a) \quad (m+n+n \text{ variables}, m+n \text{ equations})$$

$$g(a) = c$$
 (n equations, $m + n$ variables)

(m + 2n variables and m + 2n equations in total)

Proof

Lemma 1: If f attains a constrained max/min at $a \in M$, then $\nabla f \perp TM_a$ (i.e. $(\nabla f) \cdot v = 0$)

Lemma 2: Let $v \in \mathbb{R}^d$ be any vector, $v \perp TM_a$, $\Leftrightarrow \exists \lambda_1, ..., \lambda_n : v = \sum_i \lambda_i \nabla g_i(a) \ (v \in span(\nabla g_1, ..., \nabla g_n))$

v is called a **normal vector**

Note that lemma 1+ lemma 2 \Rightarrow if φ attains a local min/max at a on M then 1. (Assume $g \in C^1$, $\forall x : rank(Dg_x) = n$)

$$\nabla f - \sum \lambda_i \nabla g_i(a) = 0, 2. g(a) = c$$

Pf. of Lemma 1.

Say f attains a constrained local min/max at $a \in M$. Use implicit function theorem and write M locally as the graph of some C^1 function.

Case 1. Assume that $M = \{(x, h(x)) | x \in U\}$, where

 $U \subseteq \mathbb{R}^m$ open

 $h: \mathbb{R}^m \to \mathbb{R}^n \ C^1$,

In this case we know: $TM_a = Im \begin{pmatrix} I \\ Dh \end{pmatrix} = span\{ \begin{pmatrix} e_1 \\ \partial_1 h(b) \end{pmatrix}, \dots, \begin{pmatrix} e_m \\ \partial_m h(b) \end{pmatrix} \}$, where I the $m \times m$ identity, $Dh \ n \times m$ matrix

Let a=h(b). Note that the function $x\to f(x)$ has a local max/min at $a\Leftrightarrow y\to f(y,h(y))$ has an unconstrained min/max at b. $\forall i\in\{1,...,M\}, \frac{\partial}{\partial y_i}\left(f\left(y,h(y)\right)\right)\Big|_{y=b}=0\Leftrightarrow \text{Let }F(y)=f\left(y,h(y)\right), DF_b=Df_a\begin{bmatrix}I\\Dh_b\end{bmatrix}=0.\Leftrightarrow \nabla f(a)$ orthogonal to each column of $\begin{bmatrix}I\\Dh_b\end{bmatrix}$, the basis of TM_a

Case 2. Just permute coordinate

Pf of Lemma 2

 $\operatorname{Know} TM_a = \ker(Dg_a) \Leftrightarrow \forall v \in TM_a, (Dg_a)v = 0 \Leftrightarrow \nabla g_i(a) \cdot v = 0$

 $\text{Let } V = \{v | v \perp TM_a\}, \dim(v) = d - \dim(TM_a), \text{ and } \nabla g_i \text{ are linearly independent in } V, V = span\{\nabla g_i\}$