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Inverse
https://www.mathsisfun.com/algebra/matrix-inverse.html

https://www.mathsisfun.com/algebra/matrix-inverse.html


Invertibility
In linear algebra, an n-by-n square matrix A is 
called invertible (also nonsingular or nondegenerate) if there exists an n-by-n square 
matrix B such that

𝐴𝐵 = 𝐵𝐴 = 𝐼%
where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If 
this is the case, then the matrix B is uniquely determined by A and is called the inverse of A, denoted 
by A−1.

https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Identity_matrix
https://en.wikipedia.org/wiki/Matrix_multiplication


Eigenvalues and Eigen Vectors
In linear algebra, an eigenvector (/ˈaɪɡənˌvɛktər/) or characteristic vector of a linear transformation is a 
nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it.

Now consider the linear transformation of n-dimensional vectors defined by an n by n matrix A,

𝐴𝑣 = 𝑤

If it occurs that v and w are scalar multiples, that is if

𝐴𝑣 = 𝑤 = 𝜆𝑣

then v is an eigenvector of the linear transformation A and the scale factor λ is the eigenvalue corresponding to 
that eigenvector. Equation (1) is the eigenvalue equation for the matrix A.

https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Linear_map
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors


Eigenvalues and Eigen Vectors
𝐴𝑣 = 𝑤 = 𝜆𝑣

Can be stated equivalently as

𝐴 − 𝜆𝐼 𝑣 = 0

where I is the n by n identity matrix and 0 is the zero vector.

https://en.wikipedia.org/wiki/Identity_matrix


SVD
https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

https://en.wikipedia.org/wiki/Singular_value_decomposition

https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
https://en.wikipedia.org/wiki/Singular_value_decomposition


Positive Definite.
A linear transformation 𝑇:ℝ. → ℝ. is called positive semi-definite if

∀𝑣 ∈ ℝ., 𝑇𝑣 ⋅ 𝑣 ≥ 0

Note: A symmetric matrix is positive semi-definite iff. all eigen values≥ 0



What is Calc?

We say 𝑓 is differentiable at 𝑎 if lim
:→;

< =>: ?<(=)
: exists ( lim

B→=
< B ?<(=)

B?= exists)

Notation: 𝑓C 𝑎 = lim
B→=

< B ?<(=)
B?=



Derivative = 0
𝑓C 𝑥 = 0 when 𝑓 attains local min/max

Pf for min. Assume not. WLOG 𝑓C 𝑎 > 0

𝑓C 𝑎 = lim
:→;

< =>: ?<(=)
:

> 0

∃𝛿 > 0: ℎ < 𝛿 ⇒ < =>: ?< =
:

− 𝑓C 𝑎 < 𝑓′(𝑎)

< =>: ?< =
:

> 0 ⇒

If ℎ < 0: 𝑓 𝑎 + ℎ < 𝑓(𝑎)

Contradiction

𝑓CC 𝑎 = lim
:→;

<M =>: ?<C(=)
:

> 0

∃𝛿: ℎ < 𝛿 ⇒ <M =>: ?<M =
:

> 0

ℎ > 0 ⇒ 𝑓C 𝑎 + ℎ > 𝑓C 𝑎 = 0

ℎ < 0 ⇒ 𝑓C 𝑎 + ℎ < 𝑓C 𝑎 = 0

Suppose 𝑓′(𝑎) is not local min, ∃ℎC: 𝑓C 𝑎 + ℎC < 𝑓(𝑎)

WLOG we consider ℎC > 0, use MVT

∃𝑘 ∈ 0, ℎC : 𝑓C 𝑎 + ℎ = < =>:M ><(=)
:C



Extension to MultiDim
We say 𝑓:ℝ. → ℝ is differentiable at 𝑎, if ∃𝑎 a linear transformation 𝑇:ℝ. → ℝ

lim
O→;

|𝑓 𝑎 + ℎ − 𝑓 𝑎 − 𝑇ℎ|
|ℎ| = 0

𝑇 is called the derivative of 𝑓. 

Notation:

𝑇 alone is called the derivative of 𝑓 at 𝑎 denoted by 𝐷𝑓= (Δ𝑓)

Note: If 𝑓 differentiable, derivative is unique



Directional Derivatives:
Def: The directional derivative of 𝑓 at 𝑎 in a direction 𝑣 is defined to be

𝐷S𝑓 𝑎 = T.
.U

𝑓 𝑎 + 𝑡𝑣
UW;

If 𝑣 = 𝑒Y (𝑖U: basis vector). 𝐷[\𝑓(𝑎) is called the 𝑖U: partial derivative of 𝑓 at 𝑎. Notation: 𝜕Y𝑓(𝑎) or ^<(=)
^B\

Note: 𝜕_𝑓 𝑎 = lim
:→;

< =`>:,=a,=b,… ?<(=)
:

Prop: If 𝑓 is differentiable at 𝑎 then all directional derivatives (at 𝑎) exist (Need not be continuous).

Moreover  𝐷S𝑓 𝑎 = 𝐷𝑓=(𝑣)



Attaching the Proof for Completeness
Prop: If 𝑓 is differentiable at 𝑎 then all directional derivatives (at 𝑎) exist (Need not be 
continuous).

Moreover  𝐷S𝑓 𝑎 = 𝐷𝑓=(𝑣)

Pf: WTS lim
U→;

< =>US ?<(=)
U

= 𝐷𝑓= 𝑣

Know lim
:→;

|< =>: ?< = ? d<e :|
|:| , so we plug in ℎ = 𝑡𝑣

lim
U→;

|< =>US ?< = ?U d<e S|
U |S|

= _
S
lim
U→;

|< =>US ?< = ?U d<e S|
U

= _
S
lim
U→;

< =>US ?< =
U

− 𝐷𝑓= 𝑣 = 0



Jacobian
If 𝑓: ℝ. → ℝ is differentiable at 𝑎

𝐷𝑓=:ℝ. → ℝ is a linear transformation

𝐷𝑓= = (𝐷𝑓= 𝑒_ , … , 𝐷𝑓=(𝑒.))

𝑦 Differentiable at 𝑎 ⇒ 𝐷𝑓= = (𝜕_𝑓 𝑎 ,… , 𝜕.𝑓(𝑎))

We call the matrix of partials the Jacobian.



Chain Rule
𝑔:ℝ. → ℝh Differentiable at 𝑎 ∈ ℝ.

𝑓:ℝh → ℝ% Differentiable at 𝑔 𝑎 ∈ ℝh

Theorem: 𝑓 ∘ 𝑔 differentiable at 𝑎 and 𝐷 𝑓 ∘ 𝑔 = = 𝐷𝑓 j = 𝐷𝑔=



Higher Order Partials
𝑓:ℝ. → ℝ

𝜕Y𝑓:ℝ. → ℝ

𝜕k(𝜕Y𝑓) is the second order derivative of 𝑓



Taylor’s Theorem
Theorem (Talor's): Suppose 𝑓 is a 𝐶%(ℝ.) function, then for any 𝑎, ℎ ∈ ℝ., ∃𝑅%:ℝ. → ℝ s.t.

𝑓 𝑎 + ℎ = 𝑓 𝑎 + ∑Y 𝜕Y𝑓 𝑎 ℎY +
_
o
∑Y,k 𝜕Y𝜕k𝑓 𝑎 ℎYℎk + 𝑅% ℎ

Where lim
:→;

pq :
: q = 0



Introduce our Guests
Gradient ∇𝑓 = 𝐷𝑓 s = 𝜕_𝑓 𝑎 ,… , 𝜕.𝑓 𝑎

t

Hessian 𝐻𝑓= =
𝜕_𝜕_𝑓 … 𝜕_𝜕.𝑓
⋮ ⋱ ⋮

𝜕.𝜕_𝑓 … 𝜕.𝜕.𝑓



Local Min/Max in ℝ.

Let 𝑓:ℝ. → ℝ

𝑈 ⊆ ℝ. compact. We say 𝑓 attain a local min at 𝑎 ∈ 𝑈 if ∃𝜖 > 0, ∀𝑥 ∈ 𝐵 𝑎, 𝜖 , 𝑓 𝑥 ≥ 𝑓(𝑎)

suppose 𝑓 differentiable and attains a local min at 𝑎 ,then ∇𝑓 𝑎 = 0

Pf. If 𝑓 has a local min at 𝑎 +> ∀𝑣 ∈ ℝ., 𝑣 ≠ 0

consider 𝑔 𝑡 = 𝑓(𝑎 + 𝑡𝑣) has a local min at 𝑡 = 0

𝑔C 𝑡 = ∑YW_. 𝜕Y𝑓(𝑎 + 𝑡𝑣)
.
.U

𝑎Y + 𝑡𝑣Y = 𝑣×∇𝑓(𝑎 + 𝑡𝑣)



Hessian
If 𝑓 is 𝐶o(𝑈) and 𝑓 allows a local min at 𝑎 then ∇𝑓 𝑎 = 0 and 𝐻𝑓= is positive semi-definite

Pf.

𝑔CC 0 ≥ 0

𝑔CC 𝑡 = .
.U

∑Y 𝑣Y𝜕Y𝑓(𝑎 + 𝑡𝑣) − ∑Y,k 𝑣Y𝑣k𝜕Y𝜕k𝑓(𝑎 + 𝑡𝑣)

𝑔CC 0 ≥ 0 iff ∑Y,k 𝑣Y𝑣k𝜕Y𝜕k𝑓 𝑎 ≥ 0 , ∀𝑣

⇒ 𝐻𝑓= positive semi-definite



Thank You
SURPRISE COMING AFTER THIS SLIDE



Manifolds
Def: 𝑀 ⊆ ℝ. is called an 𝑚-dim manifold if ∀𝑥 ∈ 𝑀, ∃𝑈 ⊆ ℝ.

s.t.

1. 𝑥 ∈ 𝑈

2. ∃𝜑:𝑈 → 𝐵 0,1 ⊆ ℝ.
◦ Such that 𝜑 is a coordinate change transformation (𝐶_, bijective, 𝐷𝜑 invertible) & 𝜑 M ∩ 𝑈 =
𝐵 −, 1 ∩ {𝑥 ∈ ℝ.|𝑥o = 𝑥� = ⋯ = 𝑥h = 0}

Theorem 
1. A 1 dim manifold in ℝ. is	called	a	curve
2. An	"orientable"	2 dim	manifold	is	called	a	surface



Tangent Spaces
Tangent Plane

𝑓:ℝo → ℝ

𝑆 = 𝑥 ∈ ℝ� 𝑥� = 𝑓 𝑥_, 𝑥o (2d manifold, a surface)

𝑥� = 𝑓 𝑎_, 𝑎o + 𝐷𝑓=`,=a
𝑥_ − 𝑎_
𝑥o − 𝑎o

Tangent space = Tangent plane shifted to pass through the 
origin



Tangent Spaces
Def (Tangent Space):

Let 𝑀 ⊆ ℝ. be a 𝑚-dim manifold

Let 𝑎 ∈ 𝑀, the tangent space of 𝑀 at 𝑎 is defined as follows.
◦ ∃𝑈 ∋ 𝑎 open, & 𝜙:𝑈 → 𝐵 0,1 ⊆ ℝ. 𝐶_ diffeomorphic (𝐶_, bijective, inverse 𝐶_) s.t. 𝜙 𝑀 ∩ 𝑈 = 𝐵 0,1 ∩ (ℝh×𝟎), 𝟎 ∈

ℝ.?%

◦ Let 𝜓 = 𝜙?_ (WLOG 𝜓 0 = 𝑎)

◦ Define 𝑇𝑀= = Tangent space of 𝑀 at 𝑎 = 𝐷𝜓(ℝh×𝟎)

Tangent space of 𝑆 = 𝑥 ∈ ℝ� 𝑥� = 𝑓 𝑥_, 𝑥o at the point 𝑎 = 𝑎_, 𝑎o, 𝑓 𝑎_, 𝑎o is defined to 
be 

𝑥 ∈ ℝ� 𝑥� = ∇𝑓 𝑎 .
𝑥_
𝑥o = 𝑥 ∈ ℝ� 𝑥� = 𝜕_𝑓 𝑎 𝑥_ + 𝜕o𝑓 𝑎 𝑥o

Note that the tangent space is a subspace of ℝ�

Basis: 
1
0

𝜕_𝑓(𝑎)
,

0
1

𝜕o𝑓(𝑎)



Lagrange Multipliers (Constrained Optimization)
Say 𝑓:ℝ� → ℝ, (want to minimize/maximize 𝑓),  𝑔:ℝ� → ℝ a constraint.

Goal: maximize/minimize 𝑓 on the manifold 𝑀 = {𝑔 = 𝑐} (usually written as 𝑔 = 0 for simplicity)

https://en.wikipedia.org/wiki/Lagrange_multiplier

https://en.wikipedia.org/wiki/Lagrange_multiplier


Lagrange Multipliers
Theorem. If 𝑓 attains a constrained mim/max subject to the constraint 𝑔 = 𝑐, then at all points 
𝑎 at which the constrained local min/max is attained, we have:

∃𝜆_, … , 𝜆%: ∇𝑓 𝑎 = ∑Y 𝜆Y∇𝑔Y(𝑎) (𝑚 + 𝑛 + 𝑛 variables, 𝑚 + 𝑛 equations)

𝑔 𝑎 = 𝑐 (𝑛 equations, 𝑚 + 𝑛 variables)

(𝑚 + 2𝑛 variables and 𝑚 + 2𝑛 equations in total)



Proof
Lemma 1: If 𝑓 attains a constrained max/min at 𝑎 ∈ 𝑀, then ∇𝑓 ⊥ 𝑇𝑀= (i.e. ∇𝑓 ⋅ 𝑣 = 0)

Lemma 2: Let 𝑣 ∈ ℝ. be any vector, 𝑣 ⊥ 𝑇𝑀=, ⇔∃𝜆_,… , 𝜆%: 𝑣 = ∑Y 𝜆Y∇𝑔Y(𝑎) (𝑣 ∈
𝑠𝑝𝑎𝑛(∇𝑔_, … , ∇𝑔%))

𝑣 is called a normal vector

Note that lemma 1+ lemma 2⇒ if 𝜑 attains a local min/max at 𝑎 on 𝑀 then 1. (Assume 𝑔 ∈
𝐶_, ∀𝑥: 𝑟𝑎𝑛𝑘 𝐷𝑔B = 𝑛)

∇𝑓 − ∑𝜆k∇𝑔k(𝑎) = 0, 2. 𝑔 𝑎 = 𝑐

Pf. of Lemma 1.

Say 𝑓 attains a constrained local min/max at 𝑎 ∈ 𝑀. Use implicit function theorem and write 𝑀 locally as the graph of some 
𝐶_ function.

Case 1. Assume that 𝑀 = 𝑥, ℎ 𝑥 𝑥 ∈ 𝑈 , where

𝑈 ⊆ ℝh open

ℎ:ℝh → ℝ% 𝐶_,

In this case we know: 𝑇𝑀= = 𝐼𝑚 𝑰
𝑫𝒉 = 𝑠𝑝𝑎𝑛{

𝑒_
𝜕_ℎ 𝑏

,… ,
𝑒h

𝜕hℎ 𝑏
}, where 𝐼 the 𝑚×𝑚 identity, 𝐷ℎ 𝑛×𝑚 matrix

Let 𝑎 = ℎ(𝑏). Note that the function 𝑥 → 𝑓(𝑥) has a local max/min at 𝑎⟺ 𝑦 → 𝑓 𝑦, ℎ 𝑦 has an unconstrained min/max 
at 𝑏. ∀𝑖 ∈ 1,… ,𝑀 , T^

^ª\
𝑓 𝑦, ℎ 𝑦

ªW«
= 0⟺ Let 𝐹 𝑦 = 𝑓 𝑦, ℎ 𝑦 ,𝐷𝐹« = 𝐷𝑓=

𝑰
𝑫𝒉𝒃

= 0. ⟺∇𝑓(𝑎) orthogonal to 

each column of 
𝑰

𝑫𝒉𝒃
, the basis of 𝑇𝑀=

Case 2. Just permute coordinate

Pf of Lemma 2

Know 𝑇𝑀= = ker(𝐷𝑔=) ⇔ ∀𝑣 ∈ 𝑇𝑀=, 𝐷𝑔= 𝑣 = 0 ⇔ ∇𝑔Y 𝑎 ⋅ 𝑣 = 0

Let 𝑉 = {𝑣|𝑣 ⊥ 𝑇𝑀=}, dim 𝑣 = 𝑑 − dim 𝑇𝑀= , and ∇𝑔Y are linearly independent in 𝑉, 𝑉 = 𝑠𝑝𝑎𝑛{∇𝑔Y}


