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Matrix diagonalization

decompose an n X n square matrix A into

A=VAV"™
For example,
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square matrix \

the inverse exists only if
eigenvectors are linearly independent

However, this is possible only if A is a square matrix and A has n linearly
independent eigenvectors. Now, it is time to develop a solution for all

matrices using SVD.



Singular vectors & singular values

Consider any m x n matrix A, we can multiply it with AT to
form AAT and A'A separately.

Claim:

* symmetric

* square

e at least positive semidefinite (eigenvalues are zero or positive)
* both matrices have the same positive eigenvalues

* both have the samerankras A



Symmetric Matrices

The covariance matrices that we often use in ML are in this form. Since they are symmetric, we can choose
its eigenvectors to be orthonormal (perpendicular to each other with unit length) — this is a fundamental
property for symmetric matrices.

A does not need to be square
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AA" and A" 4
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Eigenvectors can be choosen to be orthonormal


https://medium.com/@jonathan_hui/machine-learning-linear-algebra-special-matrices-c750cd742dfe

Defns

We name the eigenvectors for AAT as u; and A"A as v; here and call
these sets of eigenvectors u and v the singular vectors of A. Both
matrices have the same positive eigenvalues. The square roots of these
eigenvalues are called singular values.



Defns




Observation (for Orthonormal Matrices)

U'U =1
Vv =1



SVD

e SVD states that any matrix A can be factorized as:

A=USV"'

where U and V are orthogonal matrices with orthonormal eigenvectors chosen

from AAT and A'A respectively. S is a diagonal matrix with r elements equal to the
square root of the positive eigenvalues of AATor AT A (both matrices have the same
positive eigenvalues anyway). The diagonal elements are composed of singular values.
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We can arrange eigenvectors in different orders

to produce U and V. To standardize the solution,

we order the eigenvectors such that vectors with

higher eigenvalues come before those with U1 Um
smaller values.






Example continued
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Covariance matrices

Variance measures how a variable varies between itself while
covariance is between two variables (a and b).

g’ =cov(a, b)=E[(a-a)(b-b)]
o,>=var(a) =cov(a, a) = E[(a-a )]

We can hold all these possible combinations of covariance in a matrix
called the covariance matrix 2.



(E[(x1 = /11)(x1 - ,Hl)]
E[(x; — pp)(x; — py1)]

E[Oe, = pp)(xy = py)]

Y =E[(X-X)(X-X)]
= XX

E[(X1 — ,ul)(xz - ,uz)]
El(x; — pp)(x2 — o)l

E[Cep = pp)x2 — p2)]

n

E[(xl _ ,ul)(-xp _ ,up)] )
E[(x = po)(xp — pp)]

E[(xp - /up)(-xp - ,up)]}

(if Xis already zero centered)



PCA

Find vector v such that variance of projected data is maximized.

Unit vector.  Each column is a sample.

L£11 Ti12 T13
£21 T22 T23
£31 T32 I33
L41 T42 T43




PCA

Find vector ¢ such that variance of projected data is maximized.

Variance of Projected Data = 1 X X1

Want to maximize this subject to v being a unit vector.

L(®) = (0" XX"0 - \N7"7-1))

Lagrange multipliers: next week!




PCA

Find vector ¢ such that variance of projected data is maximized.

L(®) = (" XXTT - N7 — 1))



PCA

Find vector ¢ such that variance of projected data is maximized.

L(®) = (7" XXT7 - N7 -1))

L
aﬁ =2XX"7 - 2\7
0v
0= (XX - \Dv
Thus, we are just*looking for the

eigenvector of this matrix.

Can also think of the equivalent SVD problem.



