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Matrix diagonalization



Singular vectors & singular values

Consider any m × n matrix A, we can multiply it with Aᵀ to 
form AAᵀ and AᵀA separately. 
Claim:
• symmetric
• square
• at least positive semidefinite (eigenvalues are zero or positive)
• both matrices have the same positive eigenvalues
• both have the same rank r as A



Symmetric Matrices

The covariance matrices that we often use in ML are in this form. Since they are symmetric, we can choose 
its eigenvectors to be orthonormal (perpendicular to each other with unit length) — this is a fundamental 
property for symmetric matrices.

https://medium.com/@jonathan_hui/machine-learning-linear-algebra-special-matrices-c750cd742dfe


Defns

We name the eigenvectors for AAᵀ as uᵢ and AᵀA as vᵢ here and call 
these sets of eigenvectors u and v the singular vectors of A. Both 
matrices have the same positive eigenvalues. The square roots of these 
eigenvalues are called singular values.



Defns



Observation (for Orthonormal Matrices)



SVD

• SVD states that any matrix A can be factorized as:

where U and V are orthogonal matrices with orthonormal eigenvectors chosen 
from AAᵀ and AᵀA respectively. S is a diagonal matrix with r elements equal to the 
square root of the positive eigenvalues of AAᵀ or Aᵀ A (both matrices have the same 
positive eigenvalues anyway). The diagonal elements are composed of singular values.



We can arrange eigenvectors in different orders 
to produce U and V. To standardize the solution, 
we order the eigenvectors such that vectors with 
higher eigenvalues come before those with 
smaller values.



Example



Example continued



Covariance matrices

Variance measures how a variable varies between itself while 
covariance is between two variables (a and b).

We can hold all these possible combinations of covariance in a matrix 
called the covariance matrix Σ.












