
HOMEWORK 2 (PROGRAMMING): NEURAL NETWORKS
10-315 Introduction to Machine Learning (Fall 2020)

Carnegie Mellon University

Summary In this assignment, you will build a handwriting recognition system using a neural network.
As a warmup, the written component of the assignment will lead you through an on-paper example of how
to implement a neural network. Then, you will implement an end-to-end system that learns to perform
handwritten letter classification.

Begin by downloading and unzipping the HW2 release from course webpage. This contains the skeleton
code, data, and autograder for this assignment.

This assignment includes an autograder for you to grade your code on your machine. Remember to finish
Q2 of written after completing this programming. This can be run with the command:

python3.6 autograder.py

The code for this assignment consists of several Python files, some of which you will need to read and
understand in order to complete the assignment, and some of which you can ignore.

Files you will edit

• neural network.py: Your code to implement, train, and execute your neural network.

• additional code.py: Add additional code that you will need to write to answer various ques-
tions will go here. This code should be runnable by calling python3.6 additional code.py,
but there are no requirements on the format and it will not be executed by the autograder.

Files you might want to look at

• test cases/Q*/*.py These are the unit tests that the autograder runs. Ideally, you would be
writing these unit tests yourself, but we are saving you a bit of time and allowing the autograder to
check these things. You should definitely be looking at these to see what is and is not being tested.
The autograder on Gradescope may run a different version of these unit tests.

• test utils.py Utility file used by the test case code.

• Reference Outputs Expected outputs used by the test case code.

Files you can safely ignore

• autograder.py Autograder infrastructure code.

Files to Edit and Submit:

You will fill in portions of neural network.py and additional code.py during the assignment.
You should submit this file containing your code and comments to the Programming component on Grade-
scope. Please do not change the other files in this distribution or submit any of our original files other than

1

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

these files. Please do not change the names of any provided functions or classes within the code, or you will
wreak havoc on the autograder.

Report:

The Written component of this assignment contains questions that require additional programming but are
not autograded. You will place the requested results in the appropriate locations within the PDF of the
Written component of this assignment.

Evaluation:

Your assignment will be assessed based on your code, the output of the autograder, and the required contents
of in the Written component.

Academic Dishonesty:

We will be checking your code against other submissions in the class for logical redundancy. If you copy
someone else’s code and submit it with minor changes, we will know. These cheat detectors are quite hard
to fool, so please don’t try. We trust you all to submit your own work only; please don’t let us down. If you
do, we will pursue the strongest consequences available to us.

Getting Help:

You are not alone! If you find yourself stuck on something, contact the course staff for help. Office hours,
recitation, and Piazza are there for your support; please use them. If you can’t make our office hours, let
us know and we will schedule more. We want these assignments to be rewarding and instructional, not
frustrating and demoralizing. But, we don’t know when or how to help unless you ask.

For staff use only
Q1 Q2 Q3 Q4 Q5 Total
/8 /10 /6 /4 /2 /30

2

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

1 Task: Neural Network Implementation

Figure 1.1: 10 Random Images of Each of 10 Letters in OCR

Your goal in this assignment is to label images of handwritten letters by implementing a Neural Network
from scratch. You will implement all of the functions needed to initialize, train, evaluate, and make predic-
tions with the network.

1.1 The Task and Datasets
Datasets We will be using a subset of an Optical Character Recognition (OCR) dataset. This data includes
images of all 26 handwritten letters; our subset will include only the letters “a,” “e,” “g,” “i,” “l,” “n,” “o,”
“r,” “t,” and “u.” The handout contains three datasets drawn from this data: a small dataset with 60 samples
per class (50 for training and 10 for test), a medium dataset with 600 samples per class (500 for training and
100 for test), and a large dataset with 1000 samples per class (900 for training and 100 for test). Figure 1.1
shows a random sample of 10 images of few letters from the dataset.

File Format Each dataset (small, medium, and large) consists of two csv files—train and test. Each row
contains 129 columns separated by commas. The first column contains the label and columns 2 to 129
represent the pixel values of a 16 × 8 image in a row major format. Label 0 corresponds to “a,” 1 to “e,” 2
to “g,” 3 to “i,” 4 to “l,” 5 to “n,” 6 to “o,” 7 to “r,” 8 to “t,” and 9 to “u.” Because the original images are
black-and-white (not grayscale), the pixel values are either 0 or 1. However, you should write your code
to accept arbitrary pixel values in the range [0,1]. The images in Figure 1.1 were produced by converting
these pixel values into .png files for visualization. Observe that no feature engineering has been done here;
instead the neural network you build will learn features appropriate for the task of character recognition.

3

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

1.2 Model Definition
In this assignment, you will implement a single-hidden-layer neural network with a sigmoid activation func-
tion for the hidden layer, and a softmax on the output layer. Let the input vectors x be of length M , the
hidden layer z consist of D hidden units, and the output layer ŷ be a probability distribution over K classes.
That is, each element yk of the output vector represents the probability of x belonging to the class k.

Model Architecture
Input (length) Layer/Activation Output (length)
x of length M Linear (hidden layer) a of length D
a of length D Sigmoid Activation z of length D
z of length D Linear (output layer) b of length K
b of length K Softmax y of length K

We can further express this model by adding bias features to the inputs of layers; assume x0 = 1 is a
bias feature on the input and that z0 = 1 is also fixed. In this way, we have two parameter matrices
α ∈ RD×(M+1) and β ∈ RK×(D+1). The extra 0th column of each matrix (i.e. α·,0 and β·,0) hold the
bias parameters. Remember to add the appropriate 0th columns to your inputs/matrices and update the
dimensions accordingly (i.e. length D + 1 instead of D).

aj =

M∑
m=0

αjmxm

zj =
1

1 + exp(−aj)

bk =
D∑
j=0

βkjzj

ŷk =
exp(bk)∑K
l=1 exp(bl)

The objective function we’re using is the average cross entropy over the training dataset D = {(x(i),y(i))}:

J(α,β) = − 1

N

N∑
i=1

K∑
k=1

y
(i)
k log(ŷ

(i)
k)

Some points to mention:

• Do not use any machine learning libraries. You may and please do use NumPy.

• Try to “vectorize” your code as much as possible. In Python, you want to avoid for-loops and instead
rely on numpy calls to perform operations such as matrix multiplication, transpose, subtraction, etc.
over an entire numpy array at once. This is much faster; using NumPy over list can speed up your
computation by 200x!

4

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

• You’ll want to pay close attention to the dimensions that you pass into and return from your functions.

1.3 [8 pts] Q1 implementation: Feed Forward
Implement the forward functions for each of the layers:
- linearForward, sigmoidForward, softmaxForward, crossEntropy.

Next, implement the NNForward function that calls a complete forward pass on the neural network.

Algorithm 1 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters α, β)
2: a = LINEARFORWARD(x,α)
3: z = SIGMOIDFORWARD(a)
4: b = LINEARFORWARD(z,β)
5: ŷ = SOFTMAXFORWARD(b)
6: J = CROSSENTROPYFORWARD(y, ŷ)
7: return intermediate quantities x,a, z,b, ŷ,J

This question will be autograded. You may run the following command to run some tests on Q1:

python3 autograder.py -q Q1

1.4 [10 pts] Q2 implementation: Backward Propagation
Implement the backward functions for each of the layers: (note: softmax and cross-entropy backpropagation
are combined to one due to easier calculation)
- softmaxBackward, sigmoidBackward, linearBackward.

The gradients we need are the matrices of partial derivatives. Let M be the number of input features,
D the number of hidden units, and K the number of outputs.

α =


α10 α11 . . . α1M

α20 α21 . . . α2M
...

...
. . .

...
αD0 αD1 . . . αDM

 gα =
∂J

∂α
=


d`
dα10

d`
dα11

. . . d`
dα1M

d`
dα20

d`
dα21

. . . d`
dα2M

...
...

. . .
...

d`
dαD0

d`
dαD1

. . . d`
dαDM

 (1.1)

β =


β10 β11 . . . β1D
β20 β21 . . . β2D

...
...

. . .
...

βK0 βK1 . . . βKD

 gβ =
∂J

∂β
=


d`
dβ10

d`
dβ11

. . . d`
dβ1D

d`
dβ20

d`
dβ21

. . . d`
dβ2D

...
...

. . .
...

d`
dβK0

d`
dβK1

. . . d`
dβKD

 (1.2)

Reminder once again that α and gα are D× (M +1) matrices, while β and gβ are K × (D+1) matrices.
The +1 comes from the extra columns α·,0 and β·,0 which are the bias parameters for the first and second
layer respectively. We will always assume x0 = 1 and z0 = 1.

5

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

Next, implement the NNBackward function that calls a complete backward pass on the neural network.

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Parameters α, β, Intermediates z, ŷ)
2: Place intermediate quantities z, ŷ in scope
3: gb = SOFTMAXBACKWARD*(y, ŷ)
4: gβ,gz = LINEARBACKWARD(z,β,gb)
5: ga = SIGMOIDBACKWARD(z,gz)
6: gα,gx = LINEARBACKWARD(x,α,ga) . We discard gx
7: return parameter gradients gα,gβ,gb,gz,ga

*It is common to combine the Cross-Entropy and Softmax backpropagation into one, due to the simpler
calculation (from cancellation of numerous terms).

This question will be autograded. You may run the following command to run some tests on Q2:

python3 autograder.py -q Q2

1.5 [6 pts] Q3: Training with SGD
Implement the SGD function, where you apply stochastic gradient descent to your training.

Because we want the behavior of your program to be deterministic for testing on Gradescope, we make a
few simplifications: (1) you should not shuffle your data and (2) you will use a fixed learning rate. In the
real world, you would not make these simplifications.

SGD proceeds as follows, where E is the number of epochs and γ is the learning rate.

Algorithm 3 Stochastic Gradient Descent (SGD) without Shuffle

1: procedure SGD(Training data D, Validation data D′, other relevant parameters)
2: Initialize parameters α,β . Use either RANDOM or ZERO from Section 1.5.1
3: for e ∈ {1, 2, . . . , E} do . For each epoch
4: for (x,y) ∈ D do . For each training example (No shuffling)
5: Compute neural network layers:
6: x,a,b, z, ŷ, J = NNFORWARD(x,y,α,β)
7: Compute gradients via backprop:

8:
gα =

∂J

∂α

gβ =
∂J

∂β

 = NNBACKWARD(x,y,α,β, z, ŷ)

9: Update parameters:
10: α← α− γgα
11: β ← β − γgβ
12: Store training mean cross-entropy J(α,β) . from Eq. 1.4
13: Store validation mean cross-entropy J(α,β) . from Eq. 1.4

14: return α,β, cross entropy train list, cross entropy valid list

6

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

1.5.1 Initialization

In order to use a deep network, we must first initialize the weights and biases in the network. This is typically
done with a random initialization, or initializing the weights from some other training procedure. For this
assignment, we will be using two possible initialization:

RANDOM The weights are initialized randomly from a uniform distribution from -0.1 to 0.1.
The bias parameters are initialized to zero.

ZERO All weights are initialized to 0.

You must support both of these initialization schemes.

1.5.2 Cross-Entropy JSGD(α, β)

Cross-entropy JSGD(α, β) for a single example i is defined as follows:

JSGD(α,β) = −
K∑
k=1

y
(i)
k log(ŷ

(i)
k) (1.3)

J is a function of the model parameters α and β because ŷ(i)k is implicitly a function of x(i), α, and β since
it is the output of the neural network applied to x(i). Of course, ŷ(i)k and y(i)k are the kth components of ŷ(i)

and y(i) respectively.

The objective function you then use to calculate the average cross entropy over, say the training dataset
D = {(x(i),y(i))}, is:

J(α,β) = − 1

N

N∑
i=1

K∑
k=1

y
(i)
k log(ŷ

(i)
k) (1.4)

This question is autograded and depends on the correctness to your previous parts. You may run the follow-
ing command to run some tests on Q3:

python3 autograder.py -q Q3

1.6 [4 pts] Q4: Label Prediction
Recall that for a single input x, your network outputs a probability distribution over K classes, ŷ. After
you’ve trained your network and obtained the weight parameters α and β, you now want to predict the la-
bels given the data.

Implement the prediction function as follows.

7

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

Algorithm 4 Prediction

1: procedure PREDICTION(Training data D, Validation data D′, Parameters α,β)
2: for (x,y) ∈ D do
3: Compute neural network prediction ŷ from NNFORWARD(x,y,α,β)
4: Predict the label with highest probability l = argmaxk ŷk
5: Check for error l 6= y

6: for (x,y) ∈ D′ do
7: Compute neural network prediction ŷ from NNFORWARD(x,y,α,β)
8: Predict the label with highest probability l = argmaxk ŷk
9: Check for error l 6= y

10: return train error, valid error, train predictions, valid predictions

This question is autograded and depends on the correctness to your previous parts. You may run the follow-
ing command to run some tests on Q4:

python3 autograder.py -q Q4

1.7 [2 pts] Q5: Main train and valid function
Finally, implement the train and valid() function to train and validate your neural network imple-
mentation.

Your program should learn the parameters of the model on the training data, and report the 1) cross-entropy
on both train and validation data for each epoch. After training, it should write out its 2) predictions and
3) error rates on both train and validation data. See the docstring in the code for more details. You may
implement any helper code or functions you’d like within neural network.py.

Your implementation must satisfy the following requirements:

• Number of hidden units for the hidden layer will be determined by the num hidden argument to
the train and valid function.

• SGD must support two different initialization strategies, as described in Section 1.5.1, selecting
between them based on the init rand argument to the train and valid function.

• The number of epochs for SGD will be determined by the num epoch argument to the train and valid
function.

• The learning rate for SGD is specified by the learning rate argument to the train and valid
function.

• Perform SGD updates on the training data in the order that the data is given in the input file. Although
you would typically shuffle training examples when using stochastic gradient descent, in order to
autograde the assignment, we ask that you DO NOT shuffle trials in this assignment.

This question is autograded and depends on the correctness to your previous parts. You may run the follow-
ing command to run some tests on Q5:

python3 autograder.py -q Q5

8

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

1.8 Submission
Upload neural network.py and additional code.py to Gradescope. Your submission should
finish running within 20 minutes, after which it will time out on Gradescope.

Don’t forget to include any request results in the PDF of the Written component, which is to be submitted
on Gradescope as well.

You may submit to Gradescope as many times as you like. You may also run the autograder on your own
machine to speed up the development process. Just note that the autograder on Gradescope will be slightly
different than the local autograder. The autograder can be invoked on your own machine using the command:

python3.6 autograder.py

Note that running the autograder locally will not register your grades with us. Remember to submit your
code when you want to register your grades for this assignment.

The autograder on Gradescope might take a while but don’t worry; so long as you submit before the deadline,
it’s not late.

9

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

A Debugging Backpropagation
This section has some approaches to verifying your backpropagation

A.1 Testing Backpop with Numerical Differentiation
What happens if your backprogation is not working?

• Use what you’ve done in the written portion. Check your backpropagation code with your derivations
in Q1, and check your function outputs with the answers found in Q2.

• As usual, you can (and should) work through a tiny example dataset on paper. Compute each inter-
mediate quantity and each gradient. Check that your code reproduces each number.

• An alternative is to run a finite-difference check on each layer of the model individually. The finite-
difference check that fails should indicate where to find the bug.

Numerical differentiation provides a convenient method for testing gradients computed by backpropagation.
The centered finite difference approximation is:

∂

∂θi
J(θ) ≈ (J(θ + ε · di)− J(θ − ε · di))

2ε
(A.1)

where di is a 1-hot vector consisting of all zeros except for the ith entry of di, which has value 1. Unfortu-
nately, in practice, it suffers from issues of floating point precision. Therefore, it is typically only appropriate
to use this on small examples with an appropriately chosen ε.

In order to apply this technique to test the gradients of your backpropagation implementation, you will
need to ensure that your code is appropriately factored. Any of the modules including NNFORWARD and
NNBACKWARD could be tested in this way.

For example, you could use two functions: forward(x,y,theta) computes the cross-entropy for a
training example. backprop(x,y,theta) computes the gradient of the cross-entropy for a training
example via backpropagation. Finally, finite_diff as defined below approximates the gradient by the
centered finited difference method. The following pseudocode provides an overview of the entire procedure.

def finite_diff(x, y, theta):
epsilon = 1e-5
grad = zero_vector(theta.length)
for m in [1, ..., theta.length]:

d = zero_vector(theta.length)
d[m] = 1
v = forward(x, y, theta + epsilon * d)
v -= forward(x, y, theta - epsilon * d)
v /= 2*epsilon
grad[m] = v

Compute the gradient by backpropagation
grad_bp = backprop(x, y, theta)
Approximate the gradient by the centered finite difference method
grad_fd = finite_diff(x, y, theta)

Check that the gradients are (nearly) the same

10

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

diff = grad_bp - grad_fd # element-wise difference of two vectors
print l2_norm(diff) # this value should be small (e.g. < 1e-7)

A.1.1 Limitations

This does not catch all bugs—the only thing it tells you is whether your backpropagation implementation
is correctly computing the gradient for the forward computation. Suppose your forward computation is
incorrect, e.g. you are always computing the cross-entropy of the wrong label. If your backpropagation is
also using the same wrong label, then the check above will not expose the bug. Thus, you always want to
separately test that your forward implementation is correct.

A.2 Symbolic Differentiation

Note In this section, we motivate backpropagation via a strawman: that is, we will work through the
wrong approach first (i.e. symbolic differentiation) in order to see why we want a more efficient method (i.e.
backpropagation). Do not use this symbolic differentiation in your code.

Suppose we wanted to find d`
dαij

using the method we know from high school calculus. That is, we will
analytically solve for an equation representing that quantity.

1. Considering the computational graph for the neural network, we observe that αij has exactly one child
aj =

∑M
m=0 αjmxm. That is aj is the first and only intermediate quantity that uses αij . Applying the

chain rule, we obtain
d`

dαij
=

d`

dai

dai
dαij

=
d`

dai
xj

2. So far so good, now we just need to compute d`
daj

. Not a problem! We can just apply the chain
rule again. aj just has exactly one child as well, namely zj = σ(aj). The chain rule gives us that
d`
daj

= d`
dzj

dzj
daj

= d`
dzj
zj(1− zj). Substituting back into the equation above we find that

d`

dαij
=

d`

dzj
(zj(1− zj))xi

3. How do we get d`
dzj

? You guessed it: apply the chain rule yet again. This time, however, there are
multiple children of zj in the computation graph; they are b1, b2, . . . bK . Applying the chain rule gives
us that d`

dzj
=

∑K
k=1

d`
dbk

dbk
dzj

=
∑K

k=1
d`
dbk
βkj . Substituting back into the equation above gives:

d`

dαij
=

K∑
k=1

d`

dbk
βkj(zj(1− zj))xi

4. Next we need d`
dbk

, which we again obtain via the chain rule: d`
dbk

=
∑K

l=1
d`
dŷl

dŷl
dbk

=
∑K

l=1
d`
dŷl
ŷl(I[k =

l]− ŷk). Substituting back in above gives:

d`

dαij
=

K∑
k=1

K∑
l=1

d`

dŷl
ŷl(I[k = l]− ŷk)βkj(zj(1− zj))xi

11

Homework 2 (Programming): Neural Networks 10-315 Introduction to Machine Learning (Fall 2020)

5. Finally, we know that d`
dŷl

= −yl
ŷl

which we can again substitute back in to obtain our final result:

d`

dαij
=

K∑
k=1

K∑
l=1

−yl
ŷl
ŷl(I[k = l]− ŷk)βkj(zj(1− zj))xi

Although we have successfully derived the partial derivative w.r.t. αij , the result is far from satisfying.
It is overly complicated and requires deeply nested for-loops to compute.

The above is an example of symbolic differentiation. That is, at the end we get an equation representing the
partial derivative w.r.t. αij . At this point, you should be saying to yourself: What a mess! Isn’t there a better
way? Indeed there is and its called backpropagation. The algorithm works just like the above symbolic
differentiation except that we never subsitute the partial derivative from the previous step back in. Instead,
we work “backwards” through the steps above computing partial derivatives in a top-down fashion.

12

	Task: Neural Network Implementation
	The Task and Datasets
	Model Definition
	[8 pts] Q1 implementation: Feed Forward
	[10 pts] Q2 implementation: Backward Propagation
	[6 pts] Q3: Training with SGD
	Initialization
	Cross-Entropy JSGD(,)

	[4 pts] Q4: Label Prediction
	[2 pts] Q5: Main train_and_valid function
	Submission

	Debugging Backpropagation
	Testing Backpop with Numerical Differentiation
	Limitations

	Symbolic Differentiation

