
10-315 Intro to Machine Learning HW3

INSTRUCTIONS

• Due: Thursday, 5 November 2020 at 11:59 PM EDT.

• Format: Complete this pdf with your work and answers. Whether you edit the latex source, use a pdf
annotator, or hand write / scan, make sure that your answers (tex’ed, typed, or handwritten) are within the
dedicated regions for each question/part. If you do not follow this format, we may deduct points.

• How to submit: Submit a pdf with your answers on Gradescope. Log in and click on our class 10-315, click
on the appropriate Written assignment, and upload your pdf containing your answers. Don’t forget to submit
the associated Programming component on Gradescope if there is any programming required.

• Policy: See the course website for homework policies and Academic Integrity.
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Q1. [30pts] Kernels

(a) Kernel Computation Cost

(i) [4pts] Suppose we have a two-dimensional input space such that the input vector is x = [x1, x2]T . Define
the feature mapping φ(x) = [x21,

√
2x1x2, x

2
2,
√

2x1,
√

2x2, 1]T . What is the corresponding kernel function,
i.e. k(x, z)? Do not leave φ(·) in your final answer. Simplify your answer to write it using input vectors
x, z and show your work.

(ii) [4pts] Suppose we want to compute the value of the kernel function k(x, z) from the previous question,
on two vectors x, z ∈ R2 How many operations (additions, multiplications, powers) are needed if you map
the input vector to the feature space and then perform the dot product on the mapped features? Show
your work.

Num: Work:

(iii) [2pts] How many operations (additions, multiplications, powers) are needed if you compute through the
kernel function you derived in question 1? Show your work.

Num: Work:
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(b) [10pts] Sum of Kernels

Assume k1(·, ·) is a kernel with corresponding feature mapping φ1 : RM → RM1 , and k2(·, ·) is a kernel with
corresponding feature mapping φ2 : RM → RM2 , both acting on the same space. Prove that, k′(x, z) =
k1(x, z) + k2(x, z) is also a valid kernel by constructing its corresponding feature mapping φ′(·).

(c) [10pts] Which of the following are valid kernels for SVM and why? Data points x, z are scalars and x, z are
vectors.

(i) K(x, z) = −xz
(ii) K(x, z) = 10x · z + (x · z + 1)8

(iii) K(x, z) = x2z

(iv) K(x, z) = − exp(‖x− z‖2)

(v) K(x, z) = exp(−(‖x‖2 + ‖z‖2))
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Q2. [30pts] SVM and Duality

In this question, we are considering the kernelized version of the soft-margin SVM. The primal form is given by:

min
w,b,ξ

1

2
||w||22 + C

n∑
i=1

ξi

s.t. yi
(
wTφ(xi) + b

)
≥ 1− ξi, ∀i ∈ {1, ..., n}

ξi ≥ 0, ∀i ∈ {1, ..., n}

(a) [4pts] Write the Lagrangian for this SVM. Please use αi ≥ 0 as the dual variables on the first set of constraints
and use ηi ≥ 0 as the dual variables on the second set of constraints.

L(w, b, ξ, α, η):

To find the dual form of this SVM, we need to find a closed form solution to the following optimization of the
Lagrangian:

J(α) = min
w,b,ξ

L(w, b, ξ,α,η)

(b) Give the partial derivative of the Lagrangian with respect to each primal variable and set each partial derivative
equal to zero.

(i) [2pts]

∂L/∂w:

(ii) [2pts]

∂L/∂b:

(iii) [2pts]

∂L/∂ξi:



5

(c) [10pts]

Utilizing the expressions derived in the previous part, convert the Lagrangian into an expression for J(α) in
terms of just the αi dual variables, the data yi and xi, and the kernel function k(x, z) = φ(x)Tφ(z). Do not
include φ(·) in your final answer.

Hint: Plug an expression for w from the previous part into the Lagrangian.

L(α):
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(continued if needed)

(d) [5pts] Write down the dual form of the SVM objective for the kernelized version of soft-margin SVM using
results from previous parts. Note: Eliminate any unnecessary constraints.

(e) [5pts] Explain how the solution of kernelized soft-margin SVM can be used at test time to make prediction for
a test point x? Note: Predicted label should be specified in terms of dual solution α, kernel and training points
only.
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Q3. [20pts] Kernel SVMs

(a) [12pts] Recall that the soft-margin primal SVM problem is

min
w,b,ξ

1

2
w ·w + C

n∑
i=1

ξi

s.t. ξi ≥ 0 ∀i = 1, . . . , n

(w · xi + b)yi ≥ (1− ξi) ∀i = 1, . . . , n.

For hard-margin primal SVM, ξi = 0, ∀i. We can get the kernel SVM by taking the dual of the primal problem
and then replace the product of xi · xj by k(xi,xj), where k(., .) can be any kernel function:

max
α
−1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj) +

n∑
i=1

αi

s.t.

n∑
i=1

αiyi = 0,∀i = 1, 2, ..., n

αi ≥ 0,∀i = 1, 2, ..., n

Figure 1 plots SVM decision boundaries resulting from using different kernels and/or different slack penalties.
In Figure 1, there are two classes of training data, with labels yi ∈ {−1, 1}, represented by circles and squares
respectively. The SOLID circles and squares represent the support vectors. Match each plot in Figure 1 with
the letter of the optimization problem below and explain WHY you pick the figure for a given kernel.

(a) A soft-margin linear SVM with C = 0.1.

(b) A soft-margin linear SVM with C = 10.
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(c) A hard-margin kernel SVM with K(u,v) = exp
(
− 1

4‖u− v‖2
)

(d) A hard-margin kernel SVM with K(u,v) = exp
(
−4‖u− v‖2

)
Hint: It may help to think about the decision boundary for kernel SVM based on derivation in last question.
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(b) [8pts] You are given a training dataset, as shown in Fig 2. Note that the training data comes from sensors
which can be error-prone, so you should avoid trusting any specific point too much. For this problem, assume
that we are training an SVM with a quadratic kernel.

(a) Where would the decision boundary be for very large values of C (i.e., C→∞)? Draw on figure and justify
your answer.

(b) For C close to 0, indicate in the figure where you would expect the decision boundary to be? Justify your
answer.

(c) Which of the two cases above would you expect to work better in the classification task? Why?
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Q4. [20pts] Programming

The following questions should be completed after you work through the programming portion of this assignment.
See programming writeup for details.

(a) [4pts] Kernel Functions

Include surface plots for the boxcar kernel with width=2, and the RBF kernel with gamma = 0.1.

Plot boxcar, width=2: Plot RBF, gamma=0.1:

(b) Kernel Ridge Regression

(i) [4pts] Include surface plots for the kernel ridge regression with N=2 training points with the boxcar kernel
with width=2, and the RBF kernel with gamma = 0.1.

Plot N=2 boxcar, width=2: Plot N=2 RBF, gamma=0.1:
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(ii) [4pts] Include surface plots for the kernel ridge regression with N=200 training points with the boxcar
kernel with width=2, and the RBF kernel with gamma = 0.1.

Plot N=200 boxcar, width=2: Plot N=200 RBF, gamma=0.1:
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(iii) [5pts] Include surface plots for the kernel ridge regression with N=200 training points with the RBF kernel
with gamma = 0.01, 0.1, and 1. Explain the relationship between settings of gamma in the RBF filter
and over/under fitting.

Plot N=200 RBF, gamma=0.01: Plot N=200 RBF, gamma=0.1:

Plot N=200 RBF, gamma=1:

Explain the relationship between settings of gamma in the RBF filter and over/under
fitting.

(iv) [3pts] Among all of the kernels and hyperparameter settings that the autograder test cases ran through,
which kernel and hyperparameter combination should you choose? Why?

Answer:


