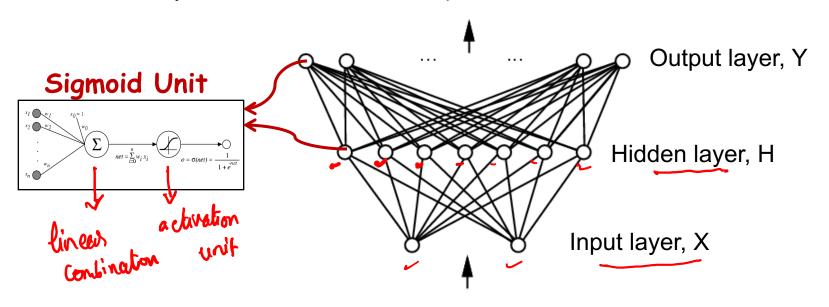
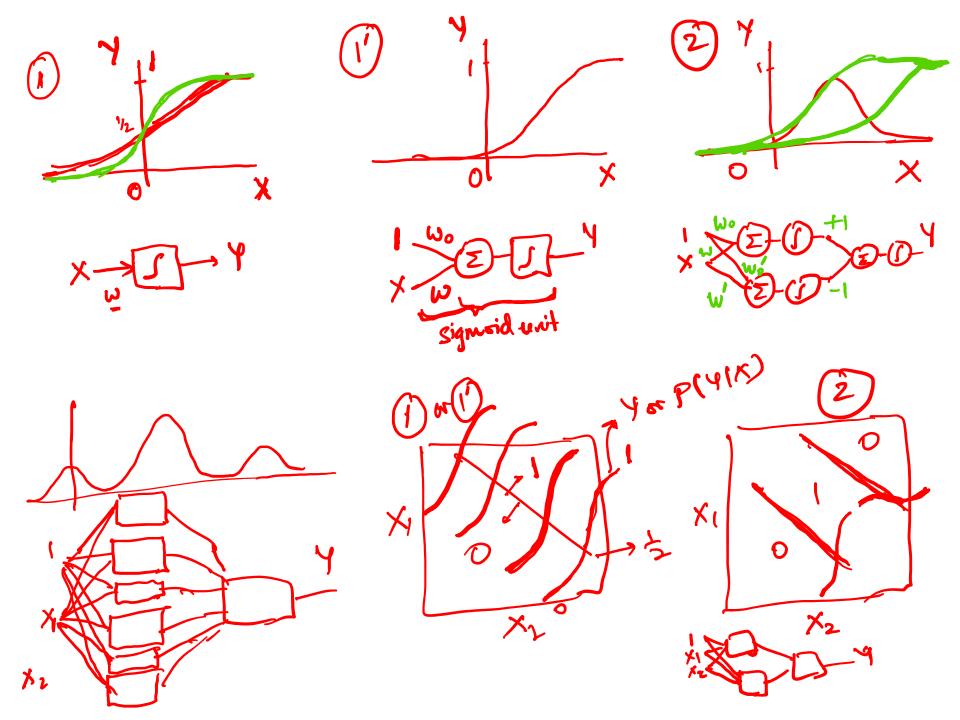
Neural Networks to learn f: X -> Y

- f can be a non-linear function
- X (vector of) continuous and/or discrete variables
- Y (vector of) continuous and/or discrete variables
- Neural networks Represent f by <u>network</u> of sigmoid (more recently ReLU – next lecture) units:





1 hidden layer NN demo on 2D inputs

 https://cs.stanford.edu/people/karpathy/convnetjs/demo/cla ssify2d.html

Expressive Capabilities of ANNs

Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Training Neural Networks – 12 loss

$$W \leftarrow \arg\min_{W} E[W]$$

$$W \leftarrow \arg\min_{W} \sum_{l} (y^{l} - \widehat{f}(x^{l}))^{2}$$

Learned neural network

Where $\widehat{f}(x^l) = o(x^l)$, output of neural network for training point \mathbf{x}^{l}

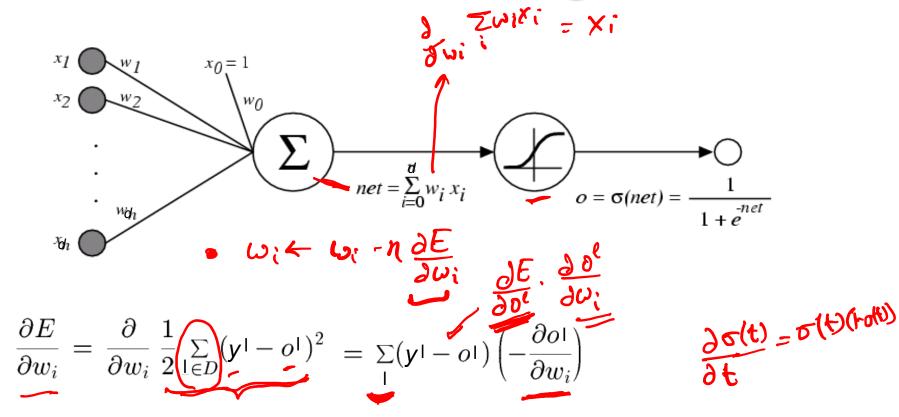
Train weights of all units to minimize sum of squared errors of predicted network outputs

Minimize using Gradient Descent

For Neural Networks, *E[w]* no longer convex in w

Gradient
$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$$
 Training rule:
$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$
 i.e.,
$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent for 1 sigmoid unit



Gradient of the sigmoid function output wrt its input

Gradient of the sigmoid unit output wrt input weights

$$\frac{\partial \sigma(net)}{\partial net} = \sigma(net)(1 - \sigma(net)) = o(1 - o)$$

$$\frac{\partial o}{\partial w} = \frac{\partial o}{\partial net} \cdot \frac{\partial net}{\partial w} = o(1 - o)x_i$$

Batch mode Gradient Descent:

Do until satisfied

- 1. Compute the gradient $\nabla E_D[\vec{w}]$ Using all training data D
- $2. \vec{w} \leftarrow \vec{w} \eta \nabla E_D[\vec{w}]$ $E_D[\vec{w}] \equiv \frac{1}{2} \sum_{l \in D} (\mathbf{y}^l o^l)^2$

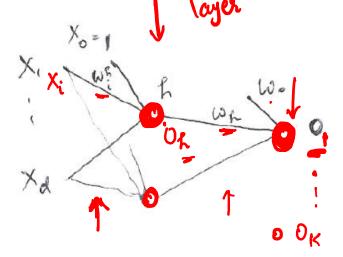
Incremental mode Gradient Descent:

Do until satisfied

- For each training example \mid in D
 - 1. Compute the gradient $\nabla E_{\vec{i}}[\vec{w}]$
 - $2. \ \vec{w} \leftarrow \vec{w} \eta \nabla E_{\parallel}[\vec{w}]$ $E_{\parallel}[\vec{w}] \equiv \frac{1}{2} (y o^{\parallel})^2 \qquad \text{in } Sur$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Gradient Descent for 1 hidden layer *** 1 output NN



$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\mathbf{l} \in D} (\mathbf{y}^{\mathbf{l}} - o^{\mathbf{l}})^2 = \sum_{\mathbf{l}} (\mathbf{y}^{\mathbf{l}} - o^{\mathbf{l}}) \left(-\frac{\partial o^{\mathbf{l}}}{\partial w_i} \right)$$

Gradient of the output with respect to w_h

Gradient of the output with respect to input weights w^hi

$$0 = \sigma(\omega_{0} + \sum_{k} \omega_{k} o_{k}) = \sigma(\sum_{k} \omega_{k} o_{k})$$

$$0_{k} = \sigma(\omega_{0}^{k} + \sum_{l} \omega_{l}^{k} x_{l}) = \sigma(\sum_{l} \omega_{l}^{k} x_{l})$$

$$= \sum_{l} (y^{l} - o^{l}) \left(-\frac{\partial o^{l}}{\partial w_{i}} \right)$$

$$0_{k} (1 - o_{k}) x_{l}$$

$$\frac{\partial o}{\partial w_{h}} = o(1 - o) o_{h}$$

$$\frac{\partial o}{\partial w_{i}^{h}} = o(1 - o) o_{h} (1 - o_{h}) w_{h} x_{i}$$

1 final output unit

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs

2.

output
$$\delta \leftarrow o(1-o)(y-o)$$

3. For each hidden unit h

$$\delta_h \leftarrow o_h (1 - o_h) w_h \delta$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = ilde{\eta} \delta_j oldsymbol{o}_i$$

Using Forward propagation

y = label of current training example

o_(h) = unit output (obtained by forward propagation)

 w_{ij} = wt from i to j

Note: if i is input variable,

o_i = x_i

Backpropagation Algorithm (MLE) using Stochastic gradient descent

Initialize all weights to small random numbers. Until satisfied, Do

- For each training example, Do
 - 1. Input the training example to the network and compute the network outputs
 - 2. For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k) (y_k - o_k)$$

3. For each hidden unit h

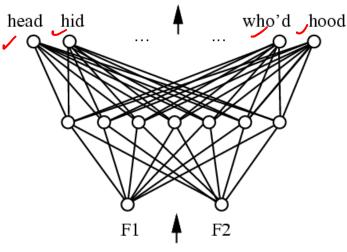
$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_i o_i$$



Using Forward propagation

y_k = label of current training example for output unit k

 $o_{k(h)}$ = unit output (obtained by forward propagation)

 w_{ij} = wt from i to j

Note: if i is input variable, $o_i = x_i$

Can implement backpropagation with matrix-vector products – uses matrix-vector calculus heavily

•
$$y = f(\mathbf{z})$$

•
$$z_i = g_i(\mathbf{x})$$

•
$$\frac{\partial y}{\partial x} = \cdots$$

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \end{bmatrix}$$

$$\frac{\partial y}{\partial x_2} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \end{bmatrix}$$

$$A. \frac{\partial z}{\partial z} \frac{\partial z}{\partial x}$$

B.
$$\frac{\partial \mathbf{z}^T}{\partial x} \frac{\partial \mathbf{y}}{\partial \mathbf{z}}$$

$$C. \frac{\partial \mathbf{y}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}^T}{\partial \mathbf{x}}$$

$$D. \frac{\partial \mathbf{y}^T}{\partial \mathbf{z}} \frac{\partial \mathbf{z}^T}{\partial \mathbf{x}}$$

$$E. \left(\frac{\partial y}{\partial z}\frac{\partial z}{\partial x}\right)^T$$

$$\frac{\partial z^{T}}{\partial x} = \frac{\partial \left[g_{1}(x)...g_{4}(x)\right]}{\partial x \otimes_{1}}$$

$$\frac{\partial g(x)}{\partial x_1} = - \frac{\partial g_{Y}(x)}{\partial x_1}$$

$$\frac{\partial g_{Y}(x)}{\partial x_2} = - - \frac{\partial g_{Y}(x)}{\partial x_3}$$

$$\frac{\partial g_{Y}(x)}{\partial x_3} = - - \frac{\partial g_{Y}(x)}{\partial x_3}$$

More on Backpropagation

- Gradient descent over entire *network* weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
 - In practice, often works well (can run multiple times)

- Minimizes error over *training* examples
 - Will it generalize well to subsequent examples?
- Training can take thousands of iterations → slow!
- Using network after training is very fast

Objective/Error no longer convex in weights