Neural Networks to learnf: X 2 Y

* fcan be anon-linear function
» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of sipgr’n_o’id (more
recently ReLU — next lecture) units :

 Output layer, Y
Sigmoid Unit

KN]
=~ _
PSSP T,
ST SR
S .

Hidden layer, H

____———/

1 hidden layer NN demo on 2D inputs

* https://cs.stanford.edu/people/karpathy/convnetjs/demo/cla
ssify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
K . .
inputs) hidden units

Continuous functions:

e Every bounded continuouys function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].

Training Neural Networks - 12 loss

W —argmin 4

W —argmin 3(y' - [()?

-—— l —

l

Learned neural

network

Where f(xl) = o(xl) , output of neural network for training point x'

Train weights of all units to minimize sum of squared errors of

predicted network outputs

Minimize using Gradient Descent

For Neural Networks,
E[w] no longer convex in w

P o

en®’
/Gra,dient £ - -~
VE[] = OF OF 8E]
,____11 ~ Owy dw,” dw,
Training rule:
AW = —nV B[]
1.e.,
OF
\ Awi B :nawl /

Gradient Descent for 1 sigmoid unit

T o oxy
a’m

e

net =,'§bwi X <~ O =0G(net)=

21=3
BIAN Q)E é D
P aot C)U\

e = (0D
= >(y! —ol)igzjli) gs‘(t) -°

¢
\

Gradient of the sigmoid function
output wrt its input ne — —

Gradient of the sigmoid unit
output wrt input weights

| tal (Stochastic) Gradient D t
ncrementa, (Stochastic) Gradient Descen S GdD

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep|w] Using all training data D
2.W ¢ W — HVED[QE]

Incremental mode Gradient Descent:
Do until satisfied

e For each training example | in D
1. Compute the gradient VE| [u]
2. W < W — nVE [w]
- L1 Qun
B[] = §(y| —ol)? T,
Incremental Gradient Descent can approximate

Batch Gradient Descent arbitrarily closely if n
made small enough

Gradient Descent for 1 hidden layer

1 output NN
® .
0 = LT Zwpo) = s (i“"j_\‘jﬁ
© o iy 1.
@ o= (el Zefn) 2 LT *)
! [o) L oe L ad
o OK é_g..: ‘3—9'
96wt 9k
\ |
22 o 1 0 P
= - vi—ol)? _ ¢ 0
81017 8w, 2 I?D(y o) - XI:(YI _OI)(I—a’wT) ai()-of\))‘(;
o (y~0) Wh

0 R
Gradient of the output with w- _0(1 — O)Oh
respect to wy, b] = = 51:\

. . do S_\\
Gradient of the output with — b Oh(l _ Oh)whmi
respect to input weights wh, (910? S’] < ~ — "

' ' MLE
Ba,.ckpropaga,tlc?n Algo.rlthm () ! final outout unit
using Stochastic gradient descent —

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

===

1. Input the training example to the network

and compute the network outputs > Using f_g_r_/\LaLd_Q&Qag,aﬂon
2. y = label of current
OM 5§« o(1 —0)(y — 0) training example
- ' Oy = unit output
3. For each hidden Enlt h (obtained by forward
Op Oh(l — oh)whé propagation)
~ — . = wt from i to |
4. Update each network weight w; ; ol Wi =W J
R g =Wy
Wij < Wij i Aw; US Note: if i is input variable,
where L 0j = X

rm 4
Aw; j =n0;0;

Backpropagation Algorithm (MLE)
using Stochastic gradient descent

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs > Using Forward propagation

2. For each output unit % y, = label of current

training example for
Of < (lk(l — ?_k)(yk - 0_’:‘) outputgunit K i

3. For each hidden unit h Ok = Unit output

opop(l—op) X wpilp (obtained by forward
keoutputs _ o ~ propagation)

4. Update each network weight w; ; Wi = wt from i to |
ij =

Wi j — wij + Aw;

where Note: if i is input variable,

O; = X;
Aw; j =n0;0;

NN 0, = P(YDIX)
, 02 o
HW2 | |:|,g]| o
(Dk 0 oS e’
L Loos), g, = P(YE 0ul¥)
» Classification —‘Efross-entropy}arror metric -
£ - Lly-00 Lg:-ylyo oy [0
tL' ""7—!-/3"0 E - ‘J "co :l,‘
— f. 0 | closs
- - Z Y by O
K = = \jk LO
(-] =
Ej UJ -—J(L“jox‘ ¢[9
(A

\en
|22
¢ N

{ : ol

9 _
W o0
0 2

» Can implement backpropagation with matrix-vector products — uses
matrix-vector calculus heavily
11

Y1453
* 2= g;i(x) o Ea
dy _ 11X
- =
y2Y 3
9z)
o gy [aw 3=
2 w 997 e
ox 0z IR
ZF"} vaT = QM
0% dx -) ('L) —_ OF
p "oz 251
z' Ox ': ég‘(%)
ay 0z r - - 49—
& (E&) L SK2
F. None of the above oI'%

More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Objective/Error no
longer convex in
weights

