Neural Networks to learnf: X 2 Y

* fcan be anon-linear function
» X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of sipgr’n_o’id (more
recently ReLU — next lecture) units :

 Output layer, Y
Sigmoid Unit
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1 hidden layer NN demo on 2D inputs

* https://cs.stanford.edu/people/karpathy/convnetjs/demo/cla
ssify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
K . .
inputs) hidden units

Continuous functions:

e Every bounded continuouys function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].



Training Neural Networks - 12 loss
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Where f(xl) = o(xl) , output of neural network for training point x'

Train weights of all units to minimize sum of squared errors of

predicted network outputs

Minimize using Gradient Descent

For Neural Networks,
E[w] no longer convex in w
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Gradient Descent for 1 sigmoid unit
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Gradient of the sigmoid function
output wrt its input ne — —

Gradient of the sigmoid unit
output wrt input weights



| tal (Stochastic) Gradient D t
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Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep|w] Using all training data D
2.W ¢ W — HVED[QE]

Incremental mode Gradient Descent:
Do until satisfied

e For each training example | in D
1. Compute the gradient VE| [u]
2. W < W — nVE [w]
- L1 Qun
B[] = §(y| —ol)? T,
Incremental Gradient Descent can approximate

Batch Gradient Descent arbitrarily closely if n
made small enough




Gradient Descent for 1 hidden layer

1 output NN
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' ' MLE
Ba,.ckpropaga,tlc?n Algo.rlthm ( ) ! final outout unit
using Stochastic gradient descent —

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

===

1. Input the training example to the network

and compute the network outputs > Using f_g_r\_/\LaLd_Q&Qag,aﬂon
2. y = label of current
OM 5§« o(1 —0)(y — 0) training example
- ' Oy = unit output
3. For each hidden Enlt h (obtained by forward
Op Oh(l — oh)whé propagation)
~ — . = wt from i to |
4. Update each network weight w; ; ol Wi =W J
R g =Wy
Wij < Wij i Aw; US Note: if i is input variable,
where L 0j = X

rm 4
Aw; j =n0;0;



Backpropagation Algorithm (MLE)
using Stochastic gradient descent

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs > Using Forward propagation

2. For each output unit % y, = label of current

training example for
Of < (lk(l — ?_k)(yk - 0_’:‘) outputgunit K i

3. For each hidden unit h Ok = Unit output

opop(l—op) X wpilp (obtained by forward
keoutputs _ o ~ propagation)

4. Update each network weight w; ; Wi = wt from i to |
ij =

Wi j — wij + Aw;

where Note: if i is input variable,

O; = X;
Aw; j =n0;0;
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» Can implement backpropagation with matrix-vector products — uses
matrix-vector calculus heavily
11
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More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Objective/Error no
longer convex in
weights



