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Discriminative Classifiers

Optimal Classifier:

fr(@) = argmaxP(Y = y|X =z) -~

= argmax P(X =z|]Y =y)P(Y =y) —
=Yy

Why not learn P(Y | X) directly? Or better yet, why not learn the
decision boundary directly?

* Assume some functional form for P(Y|X) (e.g. Logistic
Regression) or for the decision boundary (e.g. Neural nets,

SVMs)

* Estimate parameters of functional form directly from
training data




At Pittsburgh G-20 summit ...




Linear classifiers — which line is
better?




Pick the one with the largest margin!




Parameterizing the decision boundary
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Parameterizing the decision boundary
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Maximizing the margin

wX+b<0

Distance of closest examples
from the line/hyperplane

margin =y = 2a/||w]| \

Step 1: w is perpendicular
to lines since for any x4, x,
on line w.(x; —x,)=0




Maximizing the margin
) Za/"w!\

wX+b<0

maréin =v = 2a/||lw||
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= ™ Step 2: Take a point x_on
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Maximizing the margin

w.X+b<0
Distance of closest examples
= from the line/hyperplane
E— margin =y = 2a/||w]|

Smaller margin < larger ||w]||
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Maximizing the margin
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r Distance of closest examples
= from the line/hyperplane
R — margin =y = 2a/||w]|
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Note: ‘a’is arbitrary (can normalize
equations by a) 11



Support Vector Machines

w.Xx+b<0 2
[fwil
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mMmin W.W
= w,b
= s.t. (w.x+b) y; 21 Vj
== = 7_’
Solve efficiently by quadratic
- programming (QP)
— Quadratic objective, linear
= = constraints
o — Well-studied solution

algorithms
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Support Vectors

wX+b<0

Linear hyperplane defined by
“support vectors”

Moving other points a little
doesn’t effect the decision
boundary

only need to store the
support vectors to predict
labels of new points

For support vectors
(w.x+b)y;=1
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What if data is not linearly separable?

Use features of features

+ of features of features....
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But run risk of overfitting!
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What if data is still not linearly
separable? >4 (k11 9,70

/'

Allow “error” in classification

P O ——

min w.w +@#mistakes &
Wb h——1 <A

s.t. (w.x+b)y; 21 V]

S
Maximize margin and minimize
# mistakes on training data

- tradeoff parameter

Not %@‘

Smaller margin < larger ||w]|| 0/1 Ioss (dops thStIngUISh between
near miss and bad mistake) e




What if data is still not linearly
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Allow “error” in classification
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- ﬁj - “slack” variables

= (>1if x; misclassifed)
pay linear penalty if mistake

@ tradeoff parameter (chosen by
Soft margin approach cross-validation)
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Soft-marginSVM
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Soften the constraints:
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- Penalty for misclassifying:
——
How do we recover hard
margin SVM?

SetC=o0
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Slack variables — Hinge loss
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Slack variables — Hinge loss
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Hinge loss
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0-1 loss
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Regularized hinge loss
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Support Vectors dosy 1)

v

Margin support vectors
=0, (Wx+b)y,=1 v~
(d'cTn" t comgtlve
but enforce constraints on
solution)

Correctly classified but on
margin

Non-margin support
vectors
§>0 (W -#3t00Y, i}

(cc—)—n_t'ribute to both objective
and constraints)

1>¢ >0 Correctly classified
but inside margin
¢ > 1 Incorrectly classified



SVM vs. Logistic Regression

pt” 4 C Fingelows
SVM : Hinge loss

loss(f(x;),yj) = (1 —(w-2; +b)y;))+

Logistic Regression : Log loss ( -ve log conditional likelihood)

IOSS(f(CUj), yj) — 10g P(yj ‘ mj? VV7 b) — log(l _|_ e_(W-$3+ )yj)
'“4—"
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