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Hard-margin SVM
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min  w.w
w,b

s.t. (w.xj+b) yj ≥ 1 "j

Data perfectly separable by a 
linear decision boundary

Hard margin approach

g
Margin, g   ⍺ 1/ǁwǁ

Solve using Quadratic 
Programming (QP)



Soft-margin SVM
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min  w.w + C Σξjw,b,{ξj} 

s.t. (w.xj+b) yj ≥ 1-ξj "j

ξj ≥ 0 "j

j

Allow “error” in classification

ξj - “slack” variables 
= (>1 if xj misclassifed)

pay linear penalty if mistake

C  - tradeoff parameter (chosen by 
cross-validation)

Still QP J

Soft margin approach
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w
.x

+ 
b 

= 
1

w
.x

+ 
b 

= 
-1

Slack variables – Hinge loss

What is the slack ξj  for the 
following points?

(w.xj+b) yj ≥ 1-ξj "j

Confidence       |     Slack
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Notice that

Slack variables – Hinge loss
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w
.x
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Notice that

Slack variables – Hinge loss

Regularized Hinge loss

0-1 loss
0 1

min  w.w + C Σ(1-(w.xj+b)yj)+w,b j

Hinge loss



Support Vectors
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w
.x

+ 
b 

= 
1

w
.x

+ 
b 

= 
-1

Margin support vectors
ξj = 0,  (w.xj+b) yj = 1 
(don’t contribute to objective 
but enforce constraints on 
solution)

Correctly classified but on 
margin

Non-margin support 
vectors
ξj > 0
(contribute to both objective 
and constraints)

1 > ξj > 0 Correctly classified 
but inside margin
ξj > 1 Incorrectly classified

min    w.w + C Σ ξjw,b,{ξj} 
s.t. (w.xj+b) yj ≥ 1-ξj "j

ξj ≥ 0 "j



What about multiple classes?

8



One vs. rest
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Learn 3 classifiers 
separately: 
Class k vs. rest

(wk, bk)k=1,2,3

y = arg max wk.x + bk
k

But wks may not be 
based on the same scale.
Note: (aw).x + (ab) is also 
a solution



Learn 1 classifier: Multi-class SVM
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Simultaneously learn 3 sets of weights

y = arg maxk w(k).x + b(k)

Margin - gap between correct 
class and nearest other class

{w(y)}, {b(y)}



Learn 1 classifier: Multi-class SVM
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Simultaneously learn 3 sets of weights

y = arg max w(k).x + b(k)

Joint optimization: wks 
have the same scale.

,{ξj} over {w(y)}, {b(y)} ,{ξj
(y)}
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SVM – linearly separable case

• Convex quadratic program – quadratic objective, linear 
constraints

• But expensive to solve if d is very large
• Often solved in dual form (n-dim problem)
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w – weights on features (d-dim problem)

n training points (x1, …, xn) 
d features xj is a d-dimensional vector 

• Primal problem:

w
.x

+ 
b 

= 
0



Detour - Constrained Optimization
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Constraint inactive Constraint active 
(tight)

x⇤ = max(b, 0)



Constrained Optimization
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b +ve

Equivalent unconstrained optimization:

Replace with lower bound (a >= 0)
x2 + I(x-b)  >=   x2 - a(x-b)



Primal and Dual Problems
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Primal problem: p* =

Notice that

= min
x

max
↵�0

L(x,↵)

Why?

min
x

max
↵�0

L(x,↵) = x2 �min
↵�0

↵(x� b)

Dual problem: d* = =

=



Constrained Optimization – Dual Problem
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Moving the constraint to objective function
Lagrangian:

Dual problem:

a = 0 constraint is inactive
a > 0  constraint is active

b +ve

Primal problem:



Connection between Primal and Dual
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Primal problem: p* = Dual problem: d* =

Ø Dual problem (maximization) is always concave even if 
primal is not convex 

Ø As many dual variables a as constraints, helpful if fewer 
constraints than dimension of primal variable x

min
x

max
↵�0

L(x,↵) ==

Why?    Pointwise infimum of concave functions is concave.
[Pointwise supremum of convex functions is convex.]



Connection between Primal and Dual
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Primal problem: p* = 

Ø Weak duality: The dual solution d* lower bounds the primal 
solution p* i.e. d* ≤  p*

To see this, recall 

For every feasible x’ (i.e. x’ ≥ b) and feasible α’ (i.e. α’ ≥ 0) , notice    
that

d(α) =                                ≤  x’2 – a’(x’-b) ≤  x’2

Since above holds true for every feasible x’, we have d(α) ≤ x*2 = p*

Dual problem: d* =



Connection between Primal and Dual
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Primal problem: p* = 

Ø Weak duality: The dual solution d* lower bounds the primal 
solution p* i.e. d* ≤  p*

Dual problem: d* =

Ø Strong duality: d* = p* holds often for many problems of 
interest e.g. if the primal is a feasible convex objective with linear 
constraints


