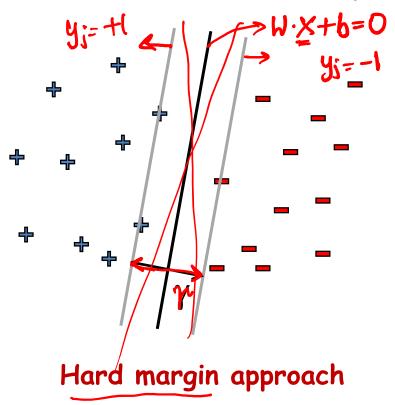
Support Vector Machines (SVMs) Recap...

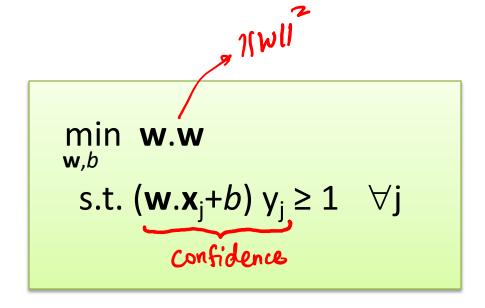
Aarti Singh

Machine Learning 10-315 Oct 26, 2020

Hard-margin SVM

Data perfectly separable by a linear decision boundary



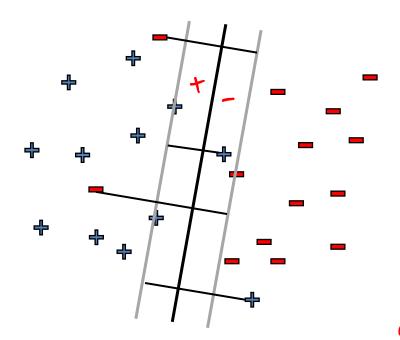


Solve using Quadratic Programming (QP)

Margin,
$$\gamma$$
 α $1/||w||$

Soft-margin SVM

Allow "error" in classification



Soft margin approach

$$\min_{\mathbf{w},b,\{\xi_{j}\}} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$

$$s.t. (\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$$

$$\xi_{j} \ge 0 \quad \forall j$$

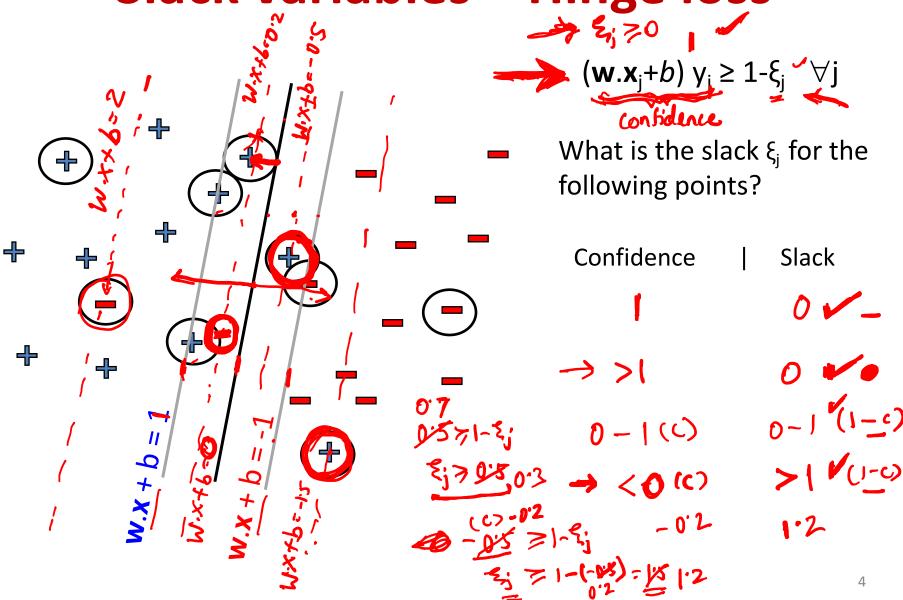
 ξ_j - "slack" variables = (>1 if x_j misclassifed) pay linear penalty if mistake

C→ C - tradeoff parameter (chosen by cross-validation)

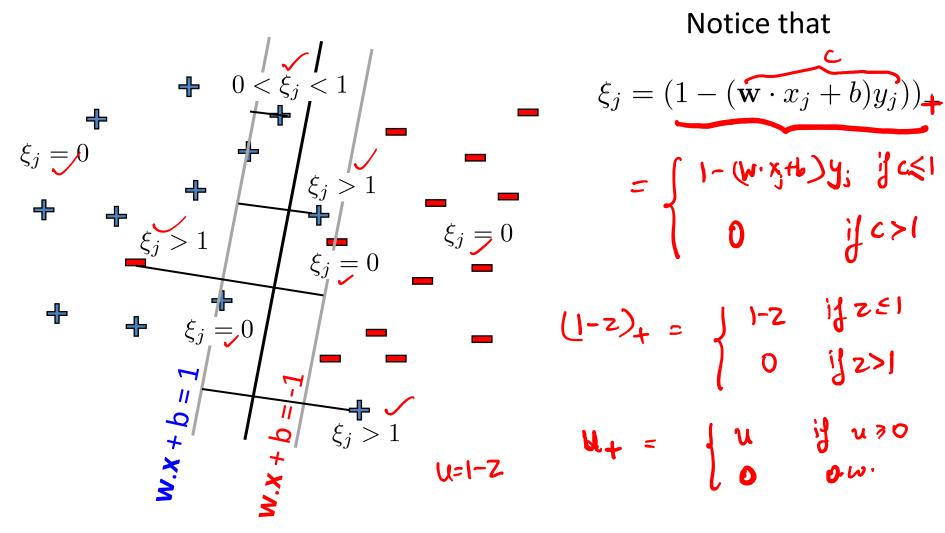
Still QP ©

Slack variables – Hinge loss

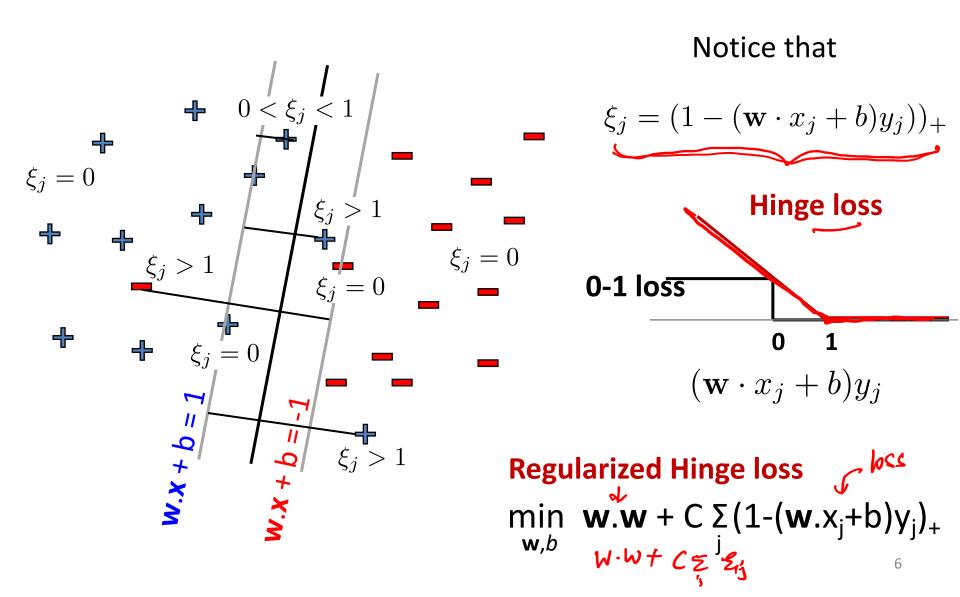
IIWII2+CZE



Slack variables – Hinge loss



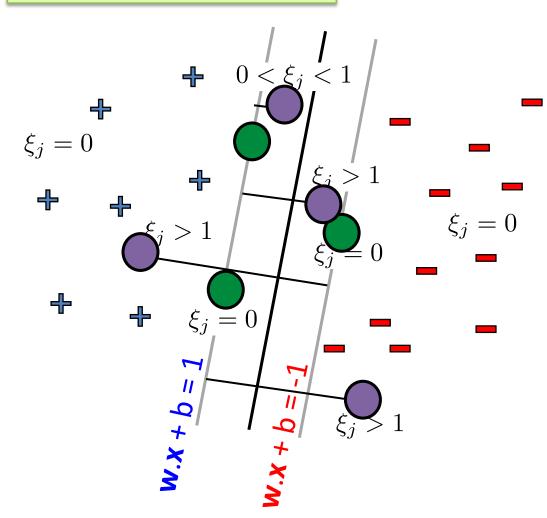
Slack variables – Hinge loss



min
$$\mathbf{w}.\mathbf{w} + C \Sigma \xi_j$$

 $\mathbf{w},b,\{\xi_j\}$
s.t. $(\mathbf{w}.\mathbf{x}_j+b) y_j \ge 1-\xi_j \quad \forall$

s.t. $(\mathbf{w}.\mathbf{x}_j+b)$ $\mathbf{y}_j \geq 1-\xi_j \quad \forall j$ pport Vectors



Margin support vectors

 $\Rightarrow \xi_j = 0$, $(\mathbf{w}.\mathbf{x}_j + b)$ $y_j = 1$ (don't contribute to objective but enforce constraints on solution)

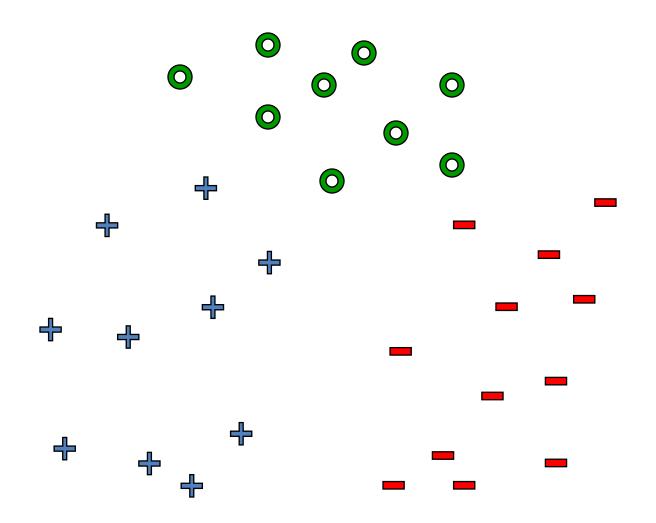
Correctly classified but on margin

Non-margin support vectors

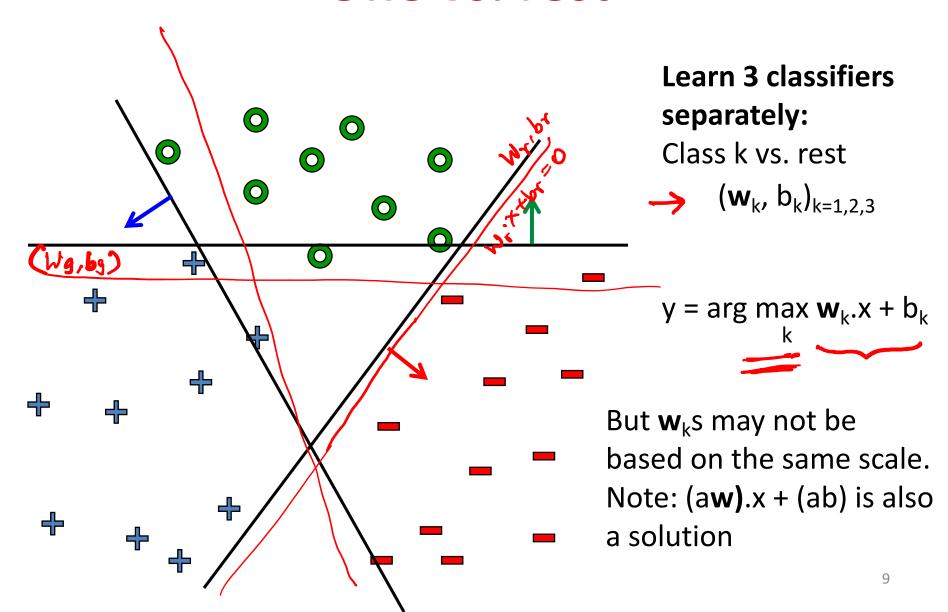
 $\xi_j > 0$ (contribute to both objective and constraints)

- \rightarrow 1 > ξ_j > 0 Correctly classified but inside margin
- \Rightarrow ξ_i > 1 Incorrectly classified ₇

What about multiple classes?

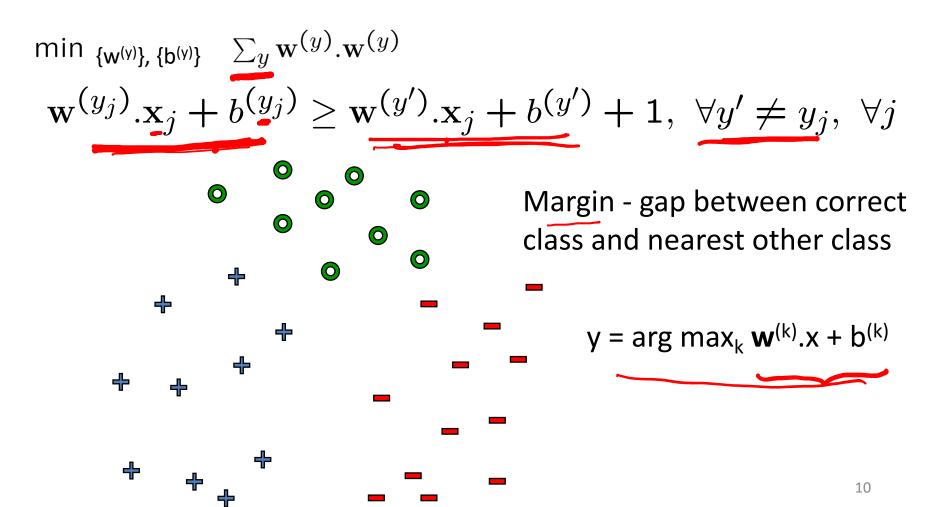


One vs. rest



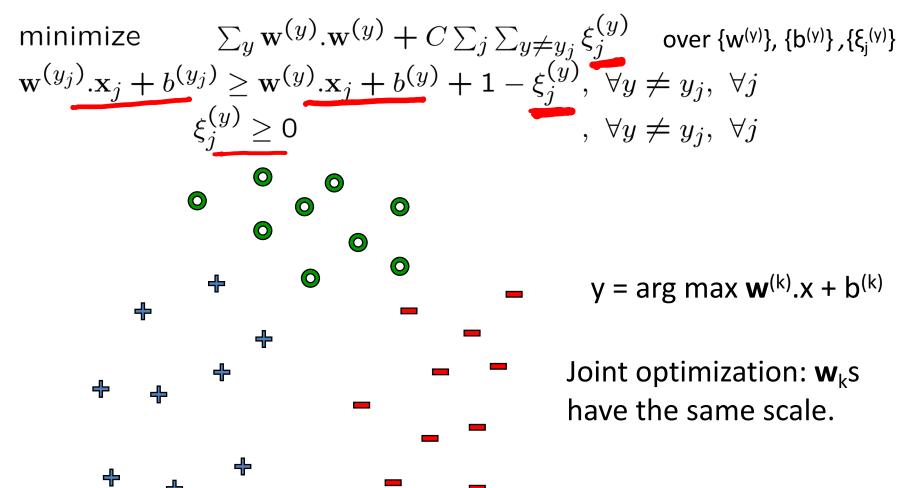
Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights



Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights



Support Vector Machines - Dual formulation

Aarti Singh

Machine Learning 10-315 Oct 26, 2020

SVM – linearly separable case

n training points d features

- $(\mathbf{x}_1, ..., \mathbf{x}_n)$ \mathbf{x}_j is a d-dimensional vector
- <u>Primal problem</u>: minimize $\mathbf{w}, b = \frac{1}{2}\mathbf{w}.\mathbf{w}$ $(\mathbf{w}.\mathbf{x}_j + b) y_j \ge 1, \ \forall j$

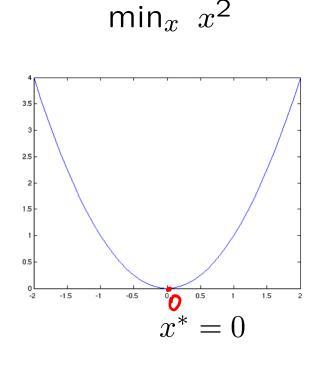
w - weights on features (d-dim problem)

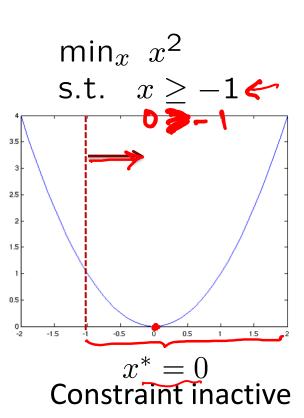
- Convex quadratic program quadratic objective, linear constraints
- But expensive to solve if d is very large
- Often solved in dual form (n-dim problem)

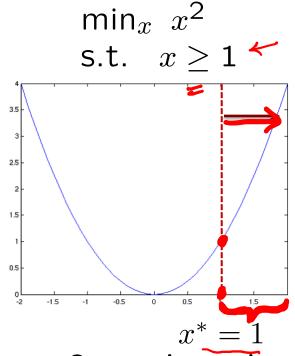
Detour - Constrained Optimization

$$\min_{x} x^{2} \leftarrow$$
s.t. $x \ge \underline{b}$

$$x^* = \max(b, 0)$$

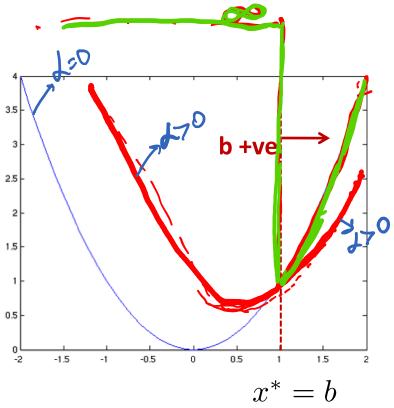






Constraint active (tight) 15

Constrained Optimization



$$\min_{x} x^{2}$$
 s.t. $x \geq b$

Equivalent unconstrained optimization:

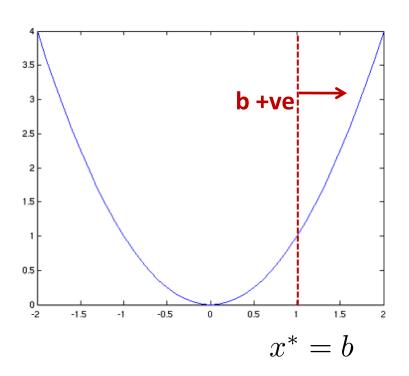
$$\frac{\text{min}}{x} \quad x^2 + \begin{cases} \infty & x < b \\ 0 & x \ge b \end{cases} \mathbf{I}(x-b)$$

$$\frac{x^2 + \mathbf{I}(x-b)}{x} \quad x^2 + \mathbf{I}(x-b)$$

Replace with lower bound ($\alpha >= 0$) $x^2 + I(x-b) >= x^2 - \alpha(x-b)$

Primal and Dual Problems

Constrained Optimization – Dual Problem



 α = 0 constraint is inactive α > 0 constraint is active

Primal problem:

$$\min_{x} x^{2}$$
s.t. $x \ge b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Dual problem:

max
$$_{\alpha}$$
 $d(\alpha)$ $min_{x} L(x,\alpha)$ s.t. $\alpha \geq 0$

Connection between Primal and Dual

Primal problem:
$$p^* = \min_x x^2$$

s.t. $x \ge b$

$$= \min_{x} \max_{\alpha \ge 0} L(x, \alpha)$$

Dual problem: d* =
$$\max_{\alpha} d(\alpha)$$
 s.t. $\alpha \geq 0$

=
$$\max_{\alpha} \min_{x} L(x, \alpha)$$

s.t. $\alpha \ge 0$

- Dual problem (maximization) is always concave even if primal is not convex
 - Why? Pointwise infimum of concave functions is concave. [Pointwise supremum of convex functions is convex.]

$$L(x,\alpha) = x^2 - \alpha(x-b)$$
 linear in α

 \succ As many dual variables α as constraints, helpful if fewer constraints than dimension of primal variable x

Connection between Primal and Dual

Primal problem:
$$p^* = \min_x x^2$$
 Dual problem: $d^* = \max_{\alpha} d(\alpha)$ s.t. $\alpha \ge 0$

Weak duality: The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \le p^*$

To see this, recall
$$L(x, \alpha) = x^2 - \alpha(x - b)$$

For every feasible x' (i.e. $x' \ge b$) and feasible α' (i.e. $\alpha' \ge 0$), notice that

$$d(\alpha) = \min_{x} L(x, \alpha) \le x'^2 - \alpha'(x'-b) \le x'^2$$

Since above holds true for every feasible x', we have $d(\alpha) \le x^{*2} = p^*$

Connection between Primal and Dual

Primal problem: p* =
$$\min_x x^2$$
 Dual problem: d* = $\max_\alpha d(\alpha)$ s.t. $x \ge b$ s.t. $\alpha \ge 0$

- Weak duality: The dual solution d^* lower bounds the primal solution p^* i.e. $d^* \le p^*$
- > Strong duality: d* = p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints