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Constrained Optimization — Dual Problem
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Connection between Primal and Dual
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Primal problem: p* = min,; =z« Dual Pj?.'f’_'im-g,*— MmaXq d(a)

— T st. x>b st. a>0
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» Weak duality: The dual solution d* lower bounds the primal
solution p*i.e. d* £ p*

Duality gap = p*-d*
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» Strong duality:holds often for many problems of
interest e.g. if the primal is a feasible convex objective with linear
constraints (Slater’s condition)
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Connection between Primal and Dual

What does strong duality say about a* (the a that achieved optimal value of
dual) and z* (the x that achieves optimal value of primal problem)?

Karush- Kunh- Rekes

Whenever strong duality holds, the following conditions (known as KKT con-

ditions) are true for o* and x*:
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e 1. YL(z*,a*) =0 i.e. Gradient of Lagrangian at =* and a* is zero.
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e 2. x* > bi.e. x* is primal feasible .~ 081:0 7(«7!0
3. a* > 0ie. a is dual feasibl v
¢ 3. 0% 2>01ie o is dual feasible .- P f:b 0
v’ e 4. a"(x* —b) = 0 (called as complementary slackness) > 0 9 ;'b
- A (W r Loy =

We use the first one to relate * and a*. We use the last one (complimentary
slackness) to argue that o = 0 if constraint is inactive and a* > 0 if constraint

is active and tight. )



Solving the dual \/(/;4
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Solving the dual

L(z, )
maxa ming 2 — a(z — b)
s.t. a>0

Solving:

Find the dual: Optimization over x is unconstrained.
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Solve: Now need to maximize L(x",a) over a = 0
Solve unconstrained problem to get a’ and then take max(a,0)
0 Q ,
—L(z*,a)=——=+b = a =2b
Ja ( ) 2 .
.
= o = max(2b,0) - =5 = max(b,0)

o. = 0 constraint is inactive, a > 0 constraint is active (tight)
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Dual SVM - linearly separable case

n training points, d features (X4, ..., X,,) where x: is a d-dimensional
vector
2
o L W
* Primal problem: minimizey ; swW.w >
(wxj+b)y; > 1, Vju n conthminls
QX +bdY;-1 —S o oly 20

w - weights on features (d-dim problem)

i e (xetbdti- ] Y = L (Wbt
* Dual problem (derivation): Tl JZ—“J(“’" Xitb)4y=1) = L(ub)

L(w,b,a) = %W.W — > {(W.Xj + b) Y — 1}
Oéj 2 O, \V/j
o - weights on training pts (n-dim problem)
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Dual SVM - linearly separable case

e Dual problem (derivation):

: 1
MaXq MiNg p L(W, b, o) = SW.W — > iy [(WX] + b) Yj — 1}
—

W - Z*ix\i%'"’ 0
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Ow =0 - W = Zozjyj ] +~ If we can solve for
W j os (dual problem),
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- oy = ©
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ob (primal problem)
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Dual SVM - linearly separable case
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MaXq MiNy p L(W, b, o) = %W.W — 2. [(w.xj -+ b) Yj — 1}
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Dual SVM - linearly separable case
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Solution gives as S v
¥ Comp p) ,
L (W-AADYi-1) = O glegpnest YVhat a.aglfi;b'b_' A
b Yo, ' i-a-vfh Yorel
Toy 41 £ (AW -0 x2b WXiYr 1y | @ %



Dual SVM: Sparsity

%

of dual solution

Only few ays can be
non-zero : where

constraint is active and
tight

(w.x; + bly,=1
R —
Support vectors —

training points j whose

oS are non-zero



Dual SVM - linearly separable case
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Dual problem is also QP W= oYX “q
Solution gives os > ’

A v/
b= 1y — w.Xp <
Use any one of support vectors with for any k where o, > 0

o, >0 to compute b since constraint is = =
tight (w.x, + b)y, =1 12




Dual SVM — non-separable case
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Dual SVM — non-separable case

L 1
MaxXimizZeq Zz Q; — 5 Zz,] Q0 5YY XK. X

>ioy; =0 -~ ke
comes from 8_L — 0 Lntuition: :

& It C->eo, recover hard-margin SVM
— L"

Dual problem is also QP W = Z Y X

: >

Solution gives as b=y, — W.x,

for any k where C > aj > 0




So why solve the dual SVM?

* There are some quadratic programming algorithms
that can solve the dual faster than the primal,
(specially in high dimensions d>>n)

* But, more importantly, the “kernel trick”!!!
-__———/—:__,—/
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Separable using higher-order features
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What if data is not linearly separable?

Use features of features
of features of features....

D(x) = (X1%, X532, X1X, ..., €XP(X1))

Feature space becomes really large very quickly!
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Higher Order Polynomials

m — input features d — degree of polynomial
d+m—1 d+m—1)]
num. terms = T = ( ) ~ m
d di(m—1)! —
=
s / grows fast!
s00 | / . d= 6, m= 100 &
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Dual formulation only depends on
dot-products, not on w!

af dxi
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®(x) — High-dimensional feature space, but never need it explicitly as long
as we can compute the dot product fast using some Kernel K



Dot Product of Polynomials

d(x) = polynomials of degree exact y d

la] -l ]
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Finally: The Kernel Trick! |
(%%
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maximizea Y a; — 5 Y i jyiy K (x;, X))
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W= Zaz’yicf(Xz')
Never represent features explicitly 0 )
— Compute dot products in closed _
form b - yk’ o W'CD, (Xk')
for any kK where C > a3, > 0

Constant-time high-dimensional dot- ,
products for many classes of features 5’3"‘ ( WO+ b 3

K
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Common Kernels
Polynomials of degree d
K(u,v)=(u-v)* v

Polynomials of degree up to d

K(u,v) = (u-v+1)¢

X
1 1 %Y ﬁ\‘\'

Gaussian/Radial kernels (polynomials of all orders — recall
series expansion of exp)

K(u,v) = exp (—”u_v||2>

202
Sigmoid
K(u,v) =tanh(qu-v+v) ~
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