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Constrained Optimization – Dual Problem
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Moving the constraint to objective function
Lagrangian:

Dual problem:

b +ve

Primal problem:



Connection between Primal and Dual
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Primal problem: p* = 

Ø Weak duality: The dual solution d* lower bounds the primal 
solution p* i.e. d* ≤  p*

Duality gap = p*-d*

Dual problem: d* =

Ø Strong duality: d* = p* holds often for many problems of 
interest e.g. if the primal is a feasible convex objective with linear 
constraints (Slater’s condition)
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Connection between Primal and Dual
What does strong duality say about ↵⇤ (the ↵ that achieved optimal value of
dual) and x⇤ (the x that achieves optimal value of primal problem)?

Whenever strong duality holds, the following conditions (known as KKT con-
ditions) are true for ↵⇤ and x⇤:

• 1. 5L(x⇤,↵⇤) = 0 i.e. Gradient of Lagrangian at x⇤ and ↵⇤ is zero.

• 2. x⇤ � b i.e. x⇤ is primal feasible

• 3. ↵⇤ � 0 i.e. ↵⇤ is dual feasible

• 4. ↵⇤(x⇤ � b) = 0 (called as complementary slackness)

We use the first one to relate x⇤ and ↵⇤. We use the last one (complimentary
slackness) to argue that ↵⇤ = 0 if constraint is inactive and ↵⇤ > 0 if constraint
is active and tight.
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Solving the dual
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Solving the dual

Find the dual: Optimization over x is unconstrained.

Solve: Now need to maximize L(x*,α) over α ≥ 0 
Solve unconstrained problem to get α’ and then take max(α’,0)

a = 0 constraint is inactive, α > 0  constraint is active (tight)

) ↵0 = 2b



Dual SVM – linearly separable case

• Primal problem:

• Dual problem (derivation):  
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w – weights on features (d-dim problem)

a – weights on training pts (n-dim problem)

n training points, d features (x1, …, xn) where xi is a d-dimensional 
vector 



Dual SVM – linearly separable case

• Dual problem (derivation):  
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If we can solve for 
as (dual problem), 
then we have a 
solution for w,b
(primal problem) 



Dual SVM – linearly separable case

• Dual problem:  
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Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs
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What about b?



Dual SVM: Sparsity of dual solution
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w
.x

+ 
b 

= 
0

Only few ajs can be 
non-zero : where 
constraint is active and 
tight

(w.xj + b)yj = 1

Support vectors –
training points j whose 
ajs are non-zero

aj > 0

aj > 0

aj > 0

aj = 0

aj = 0

aj = 0



Dual SVM – linearly separable case

Dual problem is also QP
Solution gives ajs
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Use any one of support vectors with 
ak>0 to compute b since constraint is 
tight (w.xk + b)yk = 1



Dual SVM – non-separable case
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• Primal problem:

• Dual problem:  
Lagrange 
Multipliers

,{ξj} 

,{ξj} L(w, b, ⇠,↵, µ)

HW3!



Dual SVM – non-separable case
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Dual problem is also QP
Solution gives ajs

comes from Intuition:
If C→∞, recover hard-margin SVM

@L

@⇠
= 0



So why solve the dual SVM?
• There are some quadratic programming algorithms 

that can solve the dual faster than the primal, 
(specially in high dimensions d>>n)

• But, more importantly, the “kernel trick”!!!
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Separable using higher-order features
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x1

x2

r = √x12+x22

q

x1

x1

x 1
2



What if data is not linearly separable?
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Use features of features 
of features of features….

Feature space becomes really large very quickly!

Φ(x) = (x1
2, x2

2, x1x2, …., exp(x1))



Higher Order Polynomials
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m – input features d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms



Dual formulation only depends on 
dot-products, not on w!

19

Φ(x) – High-dimensional feature space, but never need it explicitly as long 
as we can compute the dot product fast using some Kernel K



Dot Product of Polynomials
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d=1

d=2

d



Finally: The Kernel Trick!
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• Never represent features explicitly
– Compute dot products in closed 

form

• Constant-time high-dimensional dot-
products for many classes of features



Common Kernels
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• Polynomials of degree d

• Polynomials of degree up to d

• Gaussian/Radial kernels (polynomials of all orders – recall 
series expansion of exp)

• Sigmoid


