Support Vector Machines - Dual formulation and Kernel Trick

Aarti Singh

Machine Learning 10-315 Oct 28, 2020

Constrained Optimization – Dual Problem $\omega \in \mathbb{R}^d \to \mathbb{R}^{n_{\mathfrak{I}} \neq \tilde{\alpha}}$

Connection between Primal and Dual Primal problem: $p^* = \min_x x^2$ s.t. $x \ge b$ Dual problem: $d^* = \max_\alpha d(\alpha)$ s.t. $\alpha \ge 0$

Weak duality: The dual solution d* lower bounds the primal solution p* i.e. d* ≤ p*

Duality gap = p^*-d^*

Strong duality: d*=p* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints (Slater's condition)

$$(w,b) \equiv X$$

Connection between Primal and Dual

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)? Karush-Kunh-Tickes

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* :

• 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero.

• 2.
$$x^* \ge b$$
 i.e. x^* is primal feasible \checkmark

- 3. $\alpha^* \ge 0$ i.e. α^* is dual feasible \checkmark
- • 4. $\alpha^*(x^* - b) = 0$ (called as complementary slackness)

We use the first one to relate x^* and α^* . We use the last one (complementary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

di (W·×;+b)y;≥1

	Solvir	ng the	dual	
Solving	: $L(x, \alpha)$ $\max_{\alpha} \min_{x} x^2 - \alpha(x)$ s.t. $\alpha \geq 0$	(α)	min × x s.t. [x≥b L(x, L) = X	- x=0 x=0 y=-) 2-2(x-b)
Dual c	levivation: $\lambda L(X,d) = 2X - d$	∠=0 =)	xc d/2	
	$\frac{\partial x}{\partial x}$ min $L(x, d) = \begin{pmatrix} d \\ 2 \end{pmatrix}$	$\int^2 - \alpha \left(\frac{\alpha}{2} \right)^2$	$(b) = \frac{\alpha^2}{4} - \frac{\alpha^2}{2}$	+db = -d+db
Dual:	$max - \frac{\alpha^2}{4} + \frac{\alpha}{4} b$	\bigwedge	$\partial_{x} = -\frac{1}{2}$	+b = 0, $\Rightarrow d^{*} = 2b$ $\Rightarrow (0, 2b)$
	$\alpha^{*}(x^{\pm}b)=0$	よう ラメ よっ 0		2==0 ijb=-i = 2 ijb=i
		d=2 =0 =	ヺ ★ - ╹	

Solving the dual

Solving:

$$\max_{lpha} \min_{x} x^2 - lpha(x-b)$$

s.t. $lpha \ge 0$

Find the dual: Optimization over x is unconstrained.

$$\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2} \qquad L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)$$
$$= -\frac{\alpha^2}{4} + b\alpha$$

2

<u>Solve</u>: Now need to maximize $L(x^*, \alpha)$ over $\alpha \ge 0$ Solve unconstrained problem to get α' and then take max($\alpha', 0$)

 $L(x, \alpha)$

$$\frac{\partial}{\partial \alpha} L(x^*, \alpha) = -\frac{\alpha}{2} + b \quad \Rightarrow \alpha' = 2b$$
$$\Rightarrow \alpha^* = \max(2b, 0) \qquad \qquad \Rightarrow x^* = \frac{\alpha^*}{2} = \max(b, 0)$$

 $\alpha = 0$ constraint is inactive, $\alpha > 0$ constraint is active (tight)

Dual SVM – linearly separable case

n training points, d features $(\mathbf{x}_1, ..., \mathbf{x}_n)$ where \mathbf{x}_i is a d-dimensional vector $\begin{array}{ccc} \text{minimize}_{\mathbf{w},b} & \frac{1}{2}\mathbf{w}.\mathbf{w} & \overset{\|\mathbf{w}\|^{2}}{\Sigma} \\ & \left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j} \geq 1, \ \forall j \neq \mathbf{n} \ \text{constraints} \\ & \mathbf{w}.\mathbf{x}_{j+1}, \mathbf{w} \in \mathbf{n} \end{array}$ Primal problem: $(w x_j + b) y_j - 1 \rightarrow 0$ $\alpha_j \ge 0$ w - weights on features (d-dim problem) $\frac{1}{2}W \cdot W - \sum_{i} \alpha_{i} \left((W \cdot X_{j} + b) y_{j} - 1 \right) = \mathcal{L}(W, b, \alpha)$ **Dual problem** (derivation): $L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}\cdot\mathbf{w} - \sum_{j} \alpha_{j} \left| \left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right|$ $\alpha_i \geq 0, \ \forall j$ α - weights on training pts (n-dim problem)

Dual SVM – linearly separable case

• Dual problem (derivation):

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \forall j$$

$$\mathbf{w} - \mathbf{z} \mathbf{x}_{j} \mathbf{x}_{j}^{\mathbf{y}_{j}} = 0$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j} \checkmark \text{ If we can solve for}$$

$$\alpha_{s} \text{ (dual problem),}$$
then we have a solution for \mathbf{w}, b
(primal problem)

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\Rightarrow_{j} \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}^{\dagger} \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

$$(\lambda) = \frac{1}{2} \sum_{j} \lambda_{j} \mathbf{y}_{j}^{\dagger} \mathbf{x}_{j}^{\dagger} \cdot \sum_{j} \lambda_{j} \mathbf{y}_{j}^{\dagger} \mathbf{x}_{j}^{\dagger} \cdot \sum_{j} \lambda_{j} \mathbf{y}_{j}^{\dagger} \mathbf{x}_{j}^{\dagger} + \sum_{j} \lambda_{j} \left(\sum_{i} \alpha_{i} \mathbf{y}_{i} \mathbf{x}_{i}^{\dagger} \right) \cdot \mathbf{x}_{j} \mathbf{y}_{j}^{\dagger} - b \sum_{j} \mathbf{y}_{j} \mathbf{y}_{j}^{\dagger} + \sum_{j} \lambda_{j}^{\dagger} \mathbf{y}_{j}^{\dagger} \mathbf{x}_{j}^{\dagger} \cdot \sum_{j} \lambda_{j} \mathbf{y}_{j}^{\dagger} \mathbf{x}_{j}^{\dagger} + \sum_{j} \lambda_{j}^{\dagger} \mathbf{y}_{j}^{\dagger} \mathbf{y}_{j}^{$$

d

Dual SVM – linearly separable case

$$\begin{array}{ll} \text{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} . \mathbf{x}_{j} \leftarrow \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \leftarrow & \mathbf{x}_{i} \mathbf{y}_{i} \mathbf{x}_{i}^{\mathsf{n}} \\ & \alpha_{i} \geq \mathbf{0} \leftarrow \end{array}$$

Dual SVM: Sparsity of dual solution

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few $\alpha_j s$ can be non-zero : where constraint is active and tight

$$(w.x_{j} + b)y_{j} = 1$$

 $\begin{array}{l} \textbf{Support vectors} - \\ training points j whose \\ \alpha_j s \text{ are non-zero} \\ \end{array} \right. \label{eq:alpha_s}$

Dual SVM – linearly separable case

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $\alpha_{i} \ge 0$

Dual problem is also QP
Solution gives
$$\alpha_j s \longrightarrow$$

Use any one of support vectors with $\alpha_k > 0$ to compute b since constraint is tight $(w.x_k + b)y_k = 1$

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$b = y_{k}^{\prime} - \mathbf{w} \cdot \mathbf{x}_{k}$$
for any k where $\alpha_{k} > 0$

Dual SVM – non-separable case

• Primal problem:

• Dual problem:

Lagrange **Multipliers**

 $|\alpha_j| \neq v$

$$\begin{aligned} \max_{\alpha,\mu} \min_{\mathbf{w},b,\{\xi_j\}} L(\mathbf{w},b,\xi,\alpha,\mu) \leftarrow d(\mathbf{u},\mu) \\ s.t.\alpha_j \ge 0 \quad \forall j \\ \mu_j \ge 0 \quad \forall j - \\ \mathbf{HW3!} \end{aligned}$$

200 I

Dual SVM – non-separable case

$$\begin{split} \text{maximize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = 0 \quad & \mathcal{A}_{i} \neq 0 \\ & C \geq \alpha_{i} \geq 0 \quad & -\mathcal{A}_{i} \neq -\mathcal{C} \\ \\ \text{comes from } \frac{\partial L}{\partial \xi} = 0 \quad & \underbrace{\text{Intuition:}}_{\text{If } C \rightarrow \infty, \text{ recover hard-margin SVM}} \end{split}$$

Dual problem is also QP Solution gives $\alpha_j s$

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$b = y_{k} - \mathbf{w} \cdot \mathbf{x}_{k}$$
for any k where $C > \alpha_{k} > 0$

So why solve the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions d>>n)
- But, more importantly, the "kernel trick"!!!

Separable using higher-order features

What if data is not linearly separable?

Use features of features of features....

$$\Phi(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2, \dots, \exp(x_1))$$

Feature space becomes really large very quickly!

Higher Order Polynomials

Dual formulation only depends on dot-products, not on w!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$
maximize _{α} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$
 $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$

 $\Phi(\mathbf{x})$ – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Dot Product of Polynomials

 $\Phi(\mathbf{x}) = polynomials of degree exactly d$

$$d=2 \ \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix} = x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2$$

- $y_n z = (x_1z_1 + x_2z_2)^2$
- $K(x_1z) = (\mathbf{x} \cdot \mathbf{z})^2 - y_n z$

d $\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$

Finally: The Kernel Trick! maximize_{α} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$ $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) - \sum_{i} \alpha_{i} y_{i} = 0$ $C > \alpha_{i} > 0$

W.

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$

$$b = y_{k} - \mathbf{w} \cdot \Phi(\mathbf{x}_{k})$$

for any k where $C > \alpha_{k} > 0$

res sign
$$(W=\phi(x)+b)$$

 $\phi(x) = \sum_{i} \alpha_i y_i \phi(x_i) \cdot \phi(x)$
 21

Common Kernels

• Polynomials of degree d

$$K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d \checkmark$$

• Polynomials of degree up to d $K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + \mathbf{1})^d$

 Gaussian/Radial kernels (polynomials of all orders – recall series expansion of exp)

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

• Sigmoid

$$K(\mathbf{u},\mathbf{v}) = tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$