Support Vector Machines - Dual formulation and Kernel Trick

Aarti Singh

Machine Learning 10-315 Oct 28, 2020

Constrained Optimization – Dual Problem
Dual Problem

Connection between Primal and Dual Primal problem: $p^* = \min_x x^2$
S.t. $x \ge b$ **Dual problem:** d^* = max_{α} $d(\alpha)$
S.t. $\alpha > 0$

Ø **Weak duality:** The dual solution d* lower bounds the primal solution p^* i.e. $d^* \leq p^*$

Duality gap = p^* -d^{*}

► Strong duality: d^* = p^* holds often for many problems of interest e.g. if the primal is a feasible convex objective with linear constraints (Slater's condition)

$$
(w',b^*)\equiv\sum^*
$$

Connection between Primal and Dual

What does strong duality say about α^* (the α that achieved optimal value of dual) and x^* (the x that achieves optimal value of primal problem)? What does strong duality say about α (the α that achieved optimal value of dual) and *x*⇤ (the *x* that achieves optimal value of primal problem)? dual) and x^* (the x that achieves optimal value of primal problem)? Karush-Kunh-Tucker

Whenever strong duality holds, the following conditions (known as KKT conditions) are true for ↵⇤ and *x*⇤: Whenever strong duality holds, the following conditions (known as KKT conditions) are true for α^* and x^* : Whenever strong duality holds, the following conditions (known as KIT condittons) are true for α and α .

• 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero. • 1. $\nabla L(x^*, \alpha^*) = 0$ i.e. Gradient of Lagrangian at x^* and α^* is zero. $\sqrt{L(x)}$, α β = 0 i.e. Gradient of Lagrangian at *x* and α is zero.

• 2.
$$
x^* \geq b
$$
 i.e. x^* is primal feasible.

- 3. $\alpha^* > 0$ i.e. α^* is dual feasible • 3. $\alpha^* \geq 0$ i.e. α^* is dual feasible $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ is dual feasible
- 4. $\alpha^*(x^* b) = 0$ (called as complementary slackness) • 4. $\alpha^*(x^* - b) = 0$ (called as complementary slackness) $\frac{1}{4}$ $\frac{1}{4}$

We use the first one to relate x^* and α^* . We use the last one (complimentary slackness) to argue We use the first one to relate x^* and x^* . We use the last one (complimentary since the instance of the constraint is inactive and a^{*} > 0 if constraint is active and tight. We use the first one to relate x^* and α^* . We use the last one (complimentary slackness) to argue that $\alpha^* = 0$ if constraint is inactive and $\alpha^* > 0$ if constraint is active and tight.

WE USE THE VIEW ONE TO RELATE ONE ONE ONE ONE COMPLIES TO RELATE ONE COMPLETE ONE COMPLETE ONE COMPLIES TO RELATE

Solving the dual

Solving:

$$
\max_{\alpha} \min_{x} x^2 - \alpha(x - b)
$$

s.t. $\alpha \ge 0$

Find the dual: Optimization over x is unconstrained.

$$
\frac{\partial L}{\partial x} = 2x - \alpha = 0 \Rightarrow x^* = \frac{\alpha}{2} \qquad L(x^*, \alpha) = \frac{\alpha^2}{4} - \alpha \left(\frac{\alpha}{2} - b\right)
$$

$$
= -\frac{\alpha^2}{4} + b\alpha
$$

 Ω

Solve: Now need to maximize $L(x^*, \alpha)$ over $\alpha \ge 0$ Solve unconstrained problem to get α' and then take max($\alpha', 0$)

 $L(x,\alpha)$

$$
\frac{\partial}{\partial \alpha} L(x^*, \alpha) = -\frac{\alpha}{2} + b \implies \alpha' = 2b
$$

\n
$$
\Rightarrow \alpha^* = \max(2b, 0) \implies x^* = \frac{\alpha^*}{2} = \max(b, 0)
$$

 α = 0 constraint is inactive, α > 0 constraint is active (tight)

Dual SVM – linearly separable case

n training points, d features $(x_1, ..., x_n)$ where x_i is a d-dimensional vector

minimize_{w,b} $\frac{1}{2}$ w.w $\left(\mathbf{w} \cdot \mathbf{x}_j + b\right) y_j \ge 1$, $\forall j \ne n$ contraints Primal problem: $(Nx_{j}+b)Y_{i}-1-\frac{1}{20}$ $\alpha_{j}>0$ **w – weights on features (d-dim problem)** $\frac{1}{2}W\cdot W-\sum_{i} \alpha'_{j}((W\cdot X_{j}+b)Y_{j}-1)=\lambda(W,b,\alpha)$ • Dual problem (derivation): $L(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_j \alpha_j |(\mathbf{w}.\mathbf{x}_j + b) y_j - 1|$ $\alpha_j \geq 0, \forall j$ a **– weights on training pts (n-dim problem)**

Dual SVM – linearly separable case

• Dual problem (derivation):

$$
\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[(\mathbf{w} \cdot \mathbf{x}_{j} + b) y_{j} - 1 \right]
$$

\n
$$
\alpha_{j} \ge 0, \forall j
$$

\n
$$
\omega - \overline{\zeta} \mathbf{x}_{j} \mathbf{x}_{j} \mathbf{x}_{j} = 0
$$

\n
$$
\frac{\partial L}{\partial \mathbf{w}} = 0 \implies \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j} \quad \text{If we can solve for } \alpha_{j} \text{ (dual problem),}
$$

\n
$$
\frac{\partial L}{\partial b} = 0 \implies \sum_{j} \alpha_{j} y_{j} = 0 \quad \text{then we have a solution for } \mathbf{w}, b \text{ (primal problem)}
$$

Dual SVM – linearly separable case \vec{a} = $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ • Dual problem:

$$
\max_{\alpha} \min_{\mathbf{w},b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \nabla \sum_{j} \alpha_{j} \left[(\mathbf{w} \cdot \mathbf{x}_{j} + b) y_{j} - 1 \right]
$$
\n
$$
\alpha_{j} \geq 0, \forall j
$$
\n
$$
\Rightarrow \mathbf{w} = \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} \mathbf{x}_{j}^{\mathbf{c} \cdot \mathbf{R}} \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0
$$
\n
$$
\text{or } \mathbf{w} = \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} \mathbf{x}_{j}^{\mathbf{c} \cdot \mathbf{R}} \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0
$$
\n
$$
\text{or } \mathbf{w} = \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} \mathbf{x}_{j}^{\mathbf{c} \cdot \mathbf{R}} \Rightarrow \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} = 0
$$
\n
$$
\text{or } \mathbf{w} = \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} \mathbf{x}_{j}^{\mathbf{c} \cdot \mathbf{R}} \Rightarrow \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} \mathbf{x}_{j}^{\mathbf{c} \cdot \mathbf{R}} \Rightarrow \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} \mathbf{x}_{j}^{\mathbf{c} \cdot \mathbf{R}} \Rightarrow \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} \mathbf{x}_{j}^{\mathbf{c} \cdot \mathbf{R}} \Rightarrow \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} \mathbf{x}_{j}^{\mathbf{c} \cdot \mathbf{R}} \Rightarrow \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} \mathbf{x}_{j} \mathbf{x}_{j}^{\mathbf{c} \cdot \mathbf{R}} \Rightarrow \sum_{\mathbf{c} \in \mathbf{R}} \alpha_{j} y_{j} \mathbf{x}_{j}^{\mathbf{c} \cdot \mathbf{R
$$

 \overline{d}

Dual SVM – linearly separable case

maximize<sub>$$
\alpha
$$</sub> $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i \cdot x_j$
\n $\sum_i \alpha_i y_i = 0$ \Leftrightarrow $\{\vec{x}_i, \vec{y}_i\}_{i=1}^n$
\n $\alpha_i \geq 0$ \Leftrightarrow

Dual SVM: Sparsity of dual solution

 $\sum \alpha_j y_j \mathbf{x}_j$

Only few α_j s can be non-zero : where constraint is active and tight

$$
(\mathbf{w}.\mathbf{x}_j + b)\mathbf{y}_j = 1
$$

11 **Support vectors** – training points j whose $\alpha_{\rm j}$ s are non-zero

Dual SVM – linearly separable case

$$
\begin{array}{ll}\n\text{maximize}_{\alpha} & \sum_{i} \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i. \mathbf{x}_j \\
& \sum_{i} \alpha_i y_i = 0 \\
& \alpha_i \geq 0\n\end{array}
$$

Dual problem is also
$$
QP
$$

\nSolution gives $\alpha_j s \longrightarrow$

Use any one of support vectors with α_k >0 to compute b since constraint is $\text{tight } (w.x_k + b)y_k = 1$

$$
\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i
$$

$$
b = y_k^{\prime} - \mathbf{w} \cdot \mathbf{x}_k
$$

for any k where $\alpha_k > 0$

Dual SVM – non-separable case

 $rac{1}{\sqrt{2}}$ • Primal problem: *,*{ξj }

$$
w = \frac{d^{k}}{b}
$$

$$
b = \frac{1}{2}
$$

$$
\left\{ \xi_{j} - \frac{1}{2} \right\} n
$$

$$
\bigcap_{i=1}^{n} \frac{\alpha_{j}}{\mu_{j}} \geq 0
$$

• Dual problem: **Lagrange**

Multipliers

$$
\max_{\substack{\alpha,\mu\\ \mu_j \geq 0}} \min_{\substack{\mathbf{w},b,\{\xi_j\}\\\mathbf{w},b,\xi,\alpha,\mu\} \sim \mathbf{d}(\mathbf{w},\mathbf{w})}} L(\mathbf{w},b,\xi,\alpha,\mu) \leftarrow \mathbf{d}(\mathbf{w},\mathbf{w})
$$

Dual SVM – non-separable case

maximize α $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j$ x_i.x_j d ; > 0 $\sum_{i} \alpha_i y_i = 0$ $C \geq \alpha_i \geq 0$ $-2i7 - 6$ ∂L comes from $\frac{\partial L}{\partial t} = 0$ **Intuition:** $\frac{\partial \mathcal{L}}{\partial \xi} = 0$ If C→∞, recover hard-margin SVM

Dual problem is also QP Solution gives α_j s

$$
\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i
$$

$$
b = y_k - \mathbf{w}.\mathbf{x}_k
$$

for any k where $C > \alpha_k > 0$

So why solve the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions d>>n)
- But, more importantly, the "**kernel trick**"!!!

Separable using higher-order features

What if data is not linearly separable?

Use features of features of features of features….

$$
\Phi(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2, \dots, \exp(x_1))
$$

Feature space becomes really large very quickly!

Higher Order Polynomials

Dual formulation only depends on dot-products, not on w!

$$
\begin{array}{ll}\n & \text{if } \text{if } d \times \text{if } \\ \text{maximize}_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} \cdot x_{j} \\
 & \sum_{i} \alpha_{i} y_{i} = 0 \\
 & C \geq \alpha_{i} \geq 0 \\
 & \text{if } \\ \text{maximize}_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(x_{i}, x_{j}) \\
 & K(x_{i}, x_{j}) = \Phi(x_{i}) \cdot \Phi(x_{j}) \quad \text{if } \\ \sum_{i} \alpha_{i} y_{i} = 0 \\
 & C > \alpha_{i} > 0\n\end{array}
$$

Φ(**x**) – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Dot Product of Polynomials

 $\Phi(x) =$ polynomials of degree exactly d

$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \qquad \qquad \phi(\mathbf{x}) \in \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}
$$

$$
\mathbf{d} = \mathbf{1} \quad \phi(\mathbf{x}) \cdot \phi(\mathbf{z}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}
$$

$$
d=2 \varphi(x) \cdot \varphi(z) = \begin{bmatrix} \sqrt{2}x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix} = \frac{x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2}{\bigcup_{\substack{z \to z_1 \\ z_2^2}} \bigcup_{\substack{z \to z_1 \\ z_2^2 \end{bmatrix}} = \frac{(x_1z_1 + x_2z_2)^2}{(x \cdot z)^2}
$$

 $\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$ d

Finally: The Kernel Trick!
(x: x:)^{dedg} maximize α $\sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$ $K(\mathbf{x}_i, \mathbf{x}_j) = \Phi(\mathbf{x}_i) \cdot \Phi(\mathbf{x}_j)$ $\sum_i \alpha_i y_i = 0$ $C > \alpha_i > 0$

h.

- Never represent features explicitly
	- Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of featu

$$
\mathbf{w} = \sum_{i} \alpha_i y_i \Phi(\mathbf{x}_i)
$$

$$
b = y_k - \mathbf{w} \Phi(\mathbf{x}_k)
$$

for any k where $C > \alpha_k > 0$

$$
\phi(x) = \sum_{i} \alpha_{i} y_{i} \underbrace{\psi_{i}(\mathbf{x}_{i}) \cdot \phi(\mathbf{x})}_{i} \rightarrow K(K_{i}, K)
$$

Common Kernels

• Polynomials of degree d

$$
K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d \quad \checkmark
$$

• Polynomials of degree up to d $K(u, v) = (u \cdot v + 1)^d$

• Gaussian/Radial kernels (polynomials of all orders – recall series expansion of exp)

$$
K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right) \; .
$$

Sigmoid

$$
K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)
$$